
GCM 2012

The Fourth International Workshop on

Graph Computation Models

Proceedings

Bremen, Germany, 28-29 September 2012

Editors:
Rachid Echahed, Annegret Habel and Mohamed Mosbah

ii

Contents

Preface iv

Ch. M. Poskitt and D. Plump
Verifying Total Correctness of Graph Programs . 1

Hendrik Radke
HR* Graph Conditions between Counting-monadic Second-order and
Second-order Graph Formulas . 16

M. Ermler, S. Kuske, M. Luderer and C. Von Totth
A Graph Transformational View on Reductions in NP 32

F. Mantz, Y. Lamo and G. Taentzer
Co-Transformation of Type and Instance Graphs Supporting Merging of
Types with Retyping . 47

A. Faithfull, G. Perrone and Th. Hildebrandt
Big Red: A Development Environment for Bigraphs 59

O. Kniemeyer and W. Kurth
XL4C4D – Adding the Graph Transformation Language XL
to CINEMA 4D . 64

N. E. Flick
On Derivation Languages of DPO Graph Transformation Systems.
Part 1: Introducing Derivation Languages . 69

N. E. Flick
On Derivation Languages of DPO Graph Transformation Systems.
Part 2: Closure Properties . 84

B. Hoffmann
Graph Rewriting with Contextual Refinement . 99

K. Smolenova, W. Kurth and P.-H. Cournede
Parallel Graph Grammars with Instantiation Rules Allow Efficient Struc-
tural Factorization of Virtual Vegetation . 114

S. Martiel and P. Arrighi
Generalized Cayley Graphs and Cellular Automata over them 129

iii

Preface

This volume contains the proceedings of the Fourth International Workshop
on Graph Computation Models (GCM 20121). The workshop took place in
Bremen, Germany, on 28-29 September, 2012, as part of the sixth edition of the
International Conference on Graph Transformation (ICGT 2012).

The aim of GCM2 workshop series is to bring together researchers interested
in all aspects of computation models based on graphs and graph transformation
techniques. It promotes the cross-fertilizing exchange of ideas and experiences
among researchers and students from the different communities interested in the
foundations, applications, and implementations of graph computation models
and related areas. Previous editions of GCM series were held in Natal, Brazil
(GCM2006), in Leicester, UK (GCM2008) and in Enschede, The Netherlands
(GCM 2010).

These proceedings contain 11 accepted papers. All submissions were subject
to careful refereeing. The topics of accepted papers range over a wide spectrum,
including theoretical aspects of graph transformation, proof methods, formal
languages as well as application issues of graph computation models. Selected
papers from these proceedings will be published as an issue of the international
journal Electronic Communications of the EASST.

We would like to thank all who contributed to the success of GCM 2012,
especially the Programme Committee and the additional reviewers for their valu-
able contributions to the selection process as well as the contributing authors.
We would like also to express our gratitude to all members of the ICGT 2012
Conference Organizing Committee for their help in organizing GCM 2012 in
Bremen, Germany.

September, 2012 Rachid Echahed, Annegret Habel and Mohamed Mosbah

Programme co-chairs of GCM 2012

1GCM2012 web site: http://gcm2012.imag.fr
2GCM web site : http://gcm-events.org

iv

Programme committee of GCM 2012

Paolo Baldan University of Padova, Italy
Frank Drewes Umea University, Sweden
Rachid Echahed University of Grenoble, France (co-chair)
Stefan Gruner University of Pretoria, South Africa
Annegret Habel University of Oldenburg, Germany (co-chair)
Dirk Janssens University of Antwerp, Belgium
Hans-Jörg Kreowski University of Bremen, Germany
Pascale Le Gall University of Evry-Val d’Essonne, France
Mohamed Mosbah University of Bordeaux 1, France (co-chair)
Detlef Plump University of York, UK

Additional Reviewers

Christopher Bak
Sabine Kuske
Christopher Poskitt
Caroline von Totth

v

vi

Verifying Total Correctness of Graph Programs

Christopher M. Poskitt and Detlef Plump

Department of Computer Science
The University of York, UK

Abstract. GP (for Graph Programs) is an experimental nondeterminis-
tic programming language for solving problems on graphs and graph-like
structures. The language is based on graph transformation rules, allow-
ing visual programming at a high level of abstraction. Previous work has
demonstrated how to verify such programs using a Hoare-style proof sys-
tem, but only partial correctness was considered. In this paper, we extend
our calculus with new rules and termination functions, allowing proofs
that program executions always terminate (weak total correctness) and
that programs always terminate without failing program runs (total cor-
rectness). We show that the new proof system is sound with respect to
GP’s operational semantics, complete for termination, and demonstrate
how it can be used.

1 Introduction

The verification of graph transformation systems is an area of active and growing
interest, motivated by the many applications of graph transformation to spec-
ification and programming. While much of the research in this area (see e.g.
[2,3,8,4]) has focused on sets of rules or graph grammars, the challenge of veri-
fying graph-based programming languages is also beginning to be addressed. In
particular, Habel, Pennemann, and Rensink [6,5] contributed a weakest precon-
dition based verification framework for a simple graph transformation language,
using nested conditions as the assertions. The language however, does not sup-
port important practical features such as computations on labels.

In [12] we consider the verification of GP [11], a nondeterministic graph
programming language whose states are directed labelled graphs. These are ma-
nipulated directly via the application of (conditional) rule schemata, which gen-
eralise double-pushout rules with expressions over labels and relabelling. The
framework of [12] is a Hoare-style proof calculus for partial correctness. How-
ever, the calculus cannot be used to prove that programs eventually terminate
if their preconditions are satisfied, nor that their executions are absent of failure
states. This paper aims to address these issues.

We define two notions of total correctness: a weaker one accounting for termi-
nation, and a stronger one accounting for that as well as for absence of failures.
We define two calculi for these notions of total correctness by modifying our
previous proof rules, addressing divergence via the use of termination functions

1

that map graphs to natural numbers. We demonstrate the proof calculi on pro-
grams that have loops and failure points, before proving them to be sound, and
proving that the proof rule for loops is complete for termination.

Section 2 reviews some technical preliminaries; Section 3 is an informal re-
fresher on graph programs; Section 4 reviews our assertion language and the
partial correctness proof rules of our previous calculus; Section 5 formalises the
notion of (weak) total correctness and presents new proof rules which allow one
to prove these properties; Section 6 demonstrates the use of the new calculi;
Section 7 presents a proof that the new calculi are sound for (weak) total cor-
rectness, and also a proof that the calculi are complete for termination; and
finally, Section 8 concludes.

2 Preliminaries

Graph transformation in GP is based on the double-pushout approach with rela-
belling [7]. This framework deals with partially labelled graphs, whose definition
we recall below. We consider two classes of graphs, “syntactic” graphs labelled
with expressions and “semantic” graphs labelled with (sequences of) integers
and strings. We also introduce assignments which translate syntactic graphs
into semantic graphs, and substitutions which operate on syntactic graphs.

A graph over a label alphabet C is a system G = (VG, EG, sG, tG, lG,mG),
where VG and EG are finite sets of nodes (or vertices) and edges, sG, tG : EG →
VG are the source and target functions for edges, lG : VG → C is the partial node
labelling function and mG : EG → C is the (total) edge labelling function. Given
a node v, we write lG(v) = ⊥ to express that lG(v) is undefined. Graph G is
totally labelled if lG is a total function. We write G(C) for the set of all totally
labelled graphs over C, and G(C⊥) for the set of all graphs over C.

A graph morphism g : G → H between graphs G and H consists of two
functions gV : VG → VH and gE : EG → EH that preserve sources, targets and
labels; that is, sH ◦ gE = gV ◦ sG, tH ◦ gE = gV ◦ tG, mH ◦ gE = mG, and
lH(g(v)) = lG(v) for all v such that lG(v) 6= ⊥. Morphism g is an inclusion
if g(x) = x for all nodes and edges x. It is injective (surjective) if gV and gE
are injective (surjective). It is an isomorphism if it is injective, surjective and
satisfies lH(gV (v)) = ⊥ for all nodes v with lG(v) = ⊥. In this case G and H are
isomorphic, which is denoted by G ∼= H.

We consider graphs over two distinct label alphabets. Graph programs and
our assertion language contain graphs labelled with expressions, while the graphs
on which programs operate are labelled with (sequences of) integers and charac-
ter strings. We consider graphs of the first type as syntactic objects and graphs
of the second type as semantic objects, and aim to clearly separate these levels
of syntax and semantics.

Let Z be the set of integers and Char be a finite set of characters. We fix
the label alphabet L = (Z ∪ Char∗)+ of all non-empty sequences over integers
and character strings. The other label alphabet we are using, Exp, consists of
underscore delimited sequences of arithmetical expressions and strings. These

2

may contain (untyped) variable identifiers, the class of which we denote VarId.
For example, x*5 and ”root” y are both elements of Exp with x, y in VarId.
(See [12] for a formal grammar defining Exp.) We write G(Exp) for the set of all
graphs over the syntactic class Exp.

Each graph in G(Exp) represents a possibly infinite set of graphs in G(L).
The latter are obtained by instantiating variables with values from L and evalu-
ating expressions. An assignment is a partial function α : VarId → L. Given an
expression e, α is well-typed for e if it is defined for all variables occurring in e
and if all variables within arithmetical (resp. string) expressions are mapped to
integers (resp. strings). In this case we inductively define the value eα ∈ L as
follows. If e is a numeral or a sequence of characters, then eα is the integer or
character string represented by e. If e is a variable identifier, then eα = α(e).
For arithmetical and string expressions, eα is defined inductively in the usual
way. Finally, if e has the form t e1 with t a string or arithmetical expression and
e1 ∈ Exp, then eα = tαeα1 (the concatenation of the sequences tα and eα1). Given
a graph G in G(Exp) and an assignment α that is well-typed for all expressions
in G, we write Gα for the graph in G(L) that is obtained from G by replacing
each label e with eα (note that Gα has the same nodes, edges, source and target
functions as G). If g : G → H is a graph morphism with G,H ∈ G(Exp), then
gα denotes the morphism 〈gV , gE〉 : Gα → Hα.

A substitution is a partial function σ : VarId → Exp. Given an expression e, σ
is well-typed for e if it does not replace variables in arithmetical expressions with
strings (and similarly for string expressions). In this case, the expression eσ is
obtained from e by replacing every variable x for which σ is defined with σ(x) (if
σ is not defined for a variable x, then xσ = x). Given a graph G in G(Exp) such
that σ is well-typed for all labels in G, we write Gσ for the graph in G(Exp) that
is obtained by replacing each label e with eσ. If g : G → H is a graph morphism
between graphs in G(Exp), then gσ denotes the morphism 〈gV , gE〉 : Gσ → Hσ.
Given an assignment α : VarId → L, the substitution σα : VarId → Exp induced
by α maps every variable x to the expression that is obtained from α(x) by
replacing integers and strings with their syntactic counterparts. For example, if
α(x) is the integer 23, then σα(x) is 23 (the syntactic digits). Consider another
example: if α(x) is the sequence 56, a, bc , where 56 is an integer and a and bc
are strings, then σα(x) = 56 ”a” ”bc”.

3 Graph Programs

We introduce graph programs informally and by example in this section. For
technical details, further examples, and the operational semantics, refer to [11].

The “building blocks” of graph programs are conditional rule schemata: a
program is essentially a list of declarations of conditional rule schemata together
with a command sequence for controlling their application. Rule schemata gen-
eralise graph transformation rules, in that labels can contain (sequences of)
expressions over parameters of type integer or string. Labels in the left graph
comprise only variables and constants (no composite expressions) because their

3

values at execution time are determined by graph matching. The condition of a
rule schema is a simple Boolean expression over the variables.

The program colouring in Figure 1 produces a colouring (assignment of
integers to nodes such that adjacent nodes have different colours) for every (un-
tagged) integer-labelled input graph, recording colours as so-called tags. In gen-
eral, a tagged label is a sequence of expressions separated by underscores.

main = init!; inc!

init(x : int) inc(i, k, x, y : int)

1

x ⇒
1

x 0 x i y i

1 2

k ⇒ x i y i+1

1
2

k

3

3

33

3 3

33
+→ 3 0

3 1

3 03 1

3 3

33

Fig. 1. The program colouring and one of its executions

The program initially colours each node with 0 by applying the rule schema
init as long as possible, using the iteration operator ’!’. It then repeatedly
increments the target colour of edges with the same colour at both ends. Note
that this process is nondeterministic: Figure 1 shows one possible execution;
there is another execution resulting in a graph with three colours.

The program reachable? in Figure 2 checks if there is a path from one
distinguished node (tagged with 1, i.e. x 1) to another (tagged with 2, i.e. y 2),
returning the input graph if there is one, otherwise returning the same graph but
with a new direct link between them. It repeatedly propagates 0-tagged nodes
from the 1-tagged node (and subsequent 0-tagged nodes) for as long as possible
via prop!. It then tests via reachable whether there is a direct link between
the distinguished nodes, or a link from a 0-tagged node to the 2-tagged node
(indicating a path). If so, nothing happens; otherwise, a direct link is added via
addlink. In both cases, the 0-tags are removed by the iteration of undo.

GP’s formal semantics is given in the style of structural operational seman-
tics. Inference rules (omitted here, but given in [12]) inductively define a small-
step transition relation → on configurations. In our setting, a configuration is
either a command sequence (ComSeq) together with a graph (i.e. an unfin-
ished computation), just a graph, or the special element fail (representing a
failure state). The meaning of graph programs is summarised by a semantic

4

main = prop!; (if reachable then skip else addlink); undo!

prop(a, x, y, z : int) reachable(a, x, y, z : int)

x y z

1 2

a ⇒ x y z 0

1 2

a
x y z 2

1 2

a ⇒ x y z 2

1 2

a

where y=1 or y=0

addlink(x, y : int) undo(x : int)

x 1 y 2

1 2

⇒ x 1 y 2

1 2

0

1

x 0 ⇒
1

x

Fig. 2. The program reachable?

function J K, which assigns to every program P the function JP K mapping an
input graph G to the set of all possible results of running P on G. The result set
may contain, besides proper results in the form of graphs, the special value ⊥
which indicates a non-terminating or stuck computation. The semantic function
J K : ComSeq → (G(L) → 2G(L)∪{⊥}) is defined by:

JP KG = {H ∈ G(L) | 〈P, G〉 +→H} ∪ {⊥ | P can diverge or get stuck from G}

where P can diverge from G if there is an infinite sequence 〈P, G〉 → 〈P1, G1〉 →
〈P2, G2〉 → . . . , and P can get stuck from G if there is a terminal configuration
〈Q, H〉 such that 〈P, G〉 →∗ 〈Q, H〉 (where the rest program Q cannot be
executed because no inference rule is applicable).

4 Proving Partial Correctness

In this section we first review E-conditions, the assertion language of our proof
calculus. Then, we review the partial correctness proof calculus presented in
previous work.

Nested graph conditions with expressions (or E-conditions) are a morphism-
based formalism for expressing graph properties. E-conditions [12] extend the
nested conditions of [6] with expressions for labels, and assignment constraints,
which are simple Boolean expressions that restrict the types of – and relations
between – values that instantiate variables. An assignment constraint γ is eval-
uated with respect to an assignment α, denoted γα, by instantiating variables
with the values given by α then replacing function and relation symbols with
the obvious functions and relations. Because of space limitations, we do not give
a formal syntax or semantics, but refer the reader to [12].

5

A substitution σ : VarId → Exp can be applied to an assignment constraint
γ, if it is well-typed for all expressions in γ. The resulting assignment constraint,
denoted by γσ, is simply γ with each expression e replaced by eσ.

Definition 1 (E-condition). An E-condition c over a graph P is of the form
true or ∃(a | γ, c′), where a : P →֒ C is an injective graph morphism with
P,C ∈ G(Exp), γ is an assignment constraint, and c′ is an E-condition over C.
Boolean formulae over E-conditions over P yield E-conditions over P , that is,
¬c and c1 ∧ c2 are E-conditions over P if c, c1, c2 are E-conditions over P . ⊓⊔

The satisfaction of E-conditions by injective graph morphisms between graphs
in G(L) is defined inductively. Every such morphism satisfies the E-condition
true. An injective graph morphism s : S →֒ G with S,G ∈ G(L) satisfies the E-
condition c = ∃(a : P →֒ C | γ, c′), denoted s |= c, if there exists an assignment
α that is well-typed for all expressions in P,C, γ and is undefined for variables
present only in c′, such that S = Pα, and such that there is an injective graph
morphism q : Cα →֒ G with q◦aα = s, γα = true, and q |= (c′)σα . Here, σα is the
substitution induced by α, which we require to be well-typed for all expressions
in c′. If such an assignment α and morphism q exist, we say that s satisfies c by
α, and write s |=α c.

For brevity, we write false for ¬true, ∃(a | γ) for ∃(a | γ, true), ∃(a, c′) for
∃(a | true, c′), and ∀(a | γ, c′) for ¬∃(a | γ,¬c′). In our examples, when the
domain of morphism a : P →֒ C can unambiguously be inferred, we write only
the codomain C. For instance, an E-condition ∃(∅ →֒ C, ∃(C →֒ C ′)) can be
written as ∃(C, ∃(C ′)), where the domain of the outermost morphism is the
empty graph, and the domain of the nested morphism is the codomain of the
encapsulating E-condition’s morphism.

An E-condition over a graph morphism whose domain is the empty graph is
referred to as an E-constraint.

Example 1. The E-constraint ∀(x y
1 2

k | x > y, ∃(x y
1 2

l
k

)) expresses that
every pair of adjacent integer-labelled nodes with the source label greater than
the target label has a loop incident to the source node. The unabbreviated version
of the condition is as follows:

¬∃(∅ →֒ x
1

y
2

k | x > y, ¬∃(x
1 2

y
k →֒

1
x

2
y

l
k | true, true)).

⊓⊔

A graphG in G(L) satisfies an E-constraint c, denotedG |= c, if the morphism
iG : ∅ →֒ G satisfies c.

The satisfaction of (resp. application of well-typed substitutions to) Boolean
formulae over E-conditions is defined inductively, in the usual way.

Definition 2 (Partial correctness). A graph program P is partially correct
with respect to a precondition c and postcondition d (both of which are E-
constraints), denoted |=par {c} P {d}, if for every graph G ∈ G(L), G |= c
implies H |= d for every graph H in JP KG. ⊓⊔

6

In [12] we defined axioms and rules for deriving Hoare triples from graph
programs. These are given in Figure 3, where r (resp. R) ranges over conditional
rule schemata (resp. sets of conditional rule schemata), c, c′, d, d′, e, inv over E-
constraints, and P,Q over graph programs. Together, the axioms and rules define
a proof system for partial correctness. If a Hoare triple {c} P {d} can be derived
from the proof system, we write ⊢par {c} P {d}. The proof system is sound in
the sense of partial correctness, that is, ⊢par {c} P {d} implies |=par {c} P {d}
(see [12]).

[ruleapp] {Pre(r, c)} r {c} [nonapp] {¬App(R)} R {false}

{c} r {d} for each r ∈ R
[ruleset] {c} R {d}

{inv} R {inv}
[!] {inv} R! {inv ∧ ¬App(R)}

{c} P {e}, {e} Q {d}
[comp] {c} P ; Q {d}

c ⇒ c′, {c′} P {d′}, d′ ⇒ d
[cons] {c} P {d}

{c ∧App(R)} P {d}, {c ∧ ¬App(R)} Q {d}
[if] {c} if R then P else Q {d}

Fig. 3. Partial correctness proof rules for GP’s core commands

Two transformations – App and Pre – appear in the axioms and rules. Intu-
itively, App takes as input a set R of conditional rule schemata, and transforms
it into an E-condition satisfied only by graphs for which at least one rule schema
in R is applicable. Pre on the other hand constructs an E-condition such that if
G |= Pre(r, c), and the application of r to G results in a graph H, then H |= c.
Formal constructions of the transformations are omitted from this paper, but
can be found in [12].

We note that the proof system is for a strict subset of graph programs. Specif-
ically, as-long-as-possible iteration can only be applied to sets of rule schemata,
and the guards of conditionals are restricted to sets of rule schemata (in both
cases the semantics of GP allows arbitrary programs). Without this restriction,
the proof rules would require an assertion language able to express that an ar-
bitrary program will not fail.

5 Proving Total Correctness

If ⊢par {c} P {d}, then should P be executed on a graph G satisfying c, we can
be sure that any graph resulting will satisfy d. What we cannot be sure about is
whether an execution of P will ever terminate (i.e. whether an execution might

7

diverge or not). Moreover, if an execution of P does in fact terminate, we cannot
be sure that it does so without failure. When referring to total correctness, we
follow [1] in meaning both absence of divergence and failure; and when referring
to weak total correctness, we mean only absence of divergence.

Definition 3 (Weak total correctness). A graph program P is weakly totally
correct with respect to a precondition c and postcondition d (both of which are
E-constraints), denoted |=wtot {c} P {d}, if |=par {c} P {d} and if for every graph
G ∈ G(L) such that G |= c, there is no infinite sequence 〈P,G〉 → 〈P1, G1〉 →
〈P2, G2〉 → · · · . ⊓⊔

Definition 4 (Total correctness). A graph program P is totally correct with
respect to a precondition c and postcondition d (both of which are E-constraints),
denoted |=tot {c} P {d}, if |=wtot {c} P {d}, and if for every graph G ∈ G(L)
such that G |= c, there is no derivation 〈P,G〉 →∗ fail. ⊓⊔

Our proof system for weak total correctness is formed from the proof rules
of Figure 3, but with [!]tot in Figure 4 substitued for [!]. If a triple {c} P {d}
can be derived from this proof system, we write ⊢wtot {c} P {d}. The issue of
termination is localised to the proof rule for as-long-as-possible iteration: [!]tot
has an additional premise to [!] which handles this. It requires, for a particular
rule schemata set, that there is a function assigning naturals to graphs such
that these naturals are decreasing along derivation steps. Such a function # is
called a termination function. If # decreases along derivation steps yielded from
applying R to graphs satisfying inv, we say that R is #-decreasing under inv.
These definitions are given more precisely below.

⊢par {inv} R {inv}, R is #-decreasing under inv
[!]tot {inv} R! {inv ∧ ¬App(R)}

c ⇒ App(R), ⊢par {c} r {d} for each r ∈ R
[ruleset]tot {c} R {d}

Fig. 4. Total correctness proof rules for two core GP commands

Definition 5 (Termination function; #-decreasing). A termination func-
tion is a mapping # : G(L) → N from (semantic) graphs to natural numbers.
Given an E-constraint c, a set of conditional rule schemata R is #-decreasing
under c if for all graphs G,H in G(L) such that G |= c and H |= c,

G ⇒R H implies #G > #H.

⊓⊔

8

In an application of [!]tot, one must find a suitable termination function #
that returns smaller natural numbers along the graphs of direct derivations. A
simple, intuitive termination function would be one that maps a graph to its
size (e.g. total number of nodes and edges). If a rule schemata set is reducing
the size of a graph upon each application, then clearly the iteration cannot
continue indefinitely, and this is reflected by the output of # tending towards
zero. However, in cases when rule schemata are not necessarily decreasing the
size of the graph, much less trivial termination functions may be needed. We also
mention that the problem to decide whether a set of rule schemata is terminating
or not, is undecidable in general [10]. Note that the rule [!]tot requires only that
is decreasing for graphs that satisfy the invariant inv, i.e. it need not be
decreasing for graphs outside of the particular context.

Our proof system for total correctness is formed of [comp], [cons], [if], and
the proof rules of Figure 4. If a triple {c} P {d} can be derived from this
proof system, we write ⊢tot {c} P {d}. (We do not include a proof rule for
a program that is just a single rule schema r, because this case is captured
by proving ⊢tot {c} {r} {d}.) This proof system allows one to prove that all
program executions terminate without failure. Essentially, this is achieved by
ensuring that the preconditions of rule schemata sets imply their applicability.
Hence if graphs satisfy the preconditions, by implication the rule schemata sets
are applicable to those graphs, and thus we can be certain that no execution will
fail.

The proof rule [ruleset]tot separates the issues of failure and partial correct-
ness. In using the proof rule, one must show (outside the calculus) that the
applicability of R is logically implied by the precondition c. In showing that this
premise holds, we can be sure that at least one rule schema in R can be applied
to a graph satisfying c, hence no execution on that graph will fail. Separately, it
must be shown that ⊢par {c} r {d} for each r ∈ R, that is, each rule schema in
the set is partially correct with respect to the pre- and postcondition. Together,
we derive that every execution of R will yield a graph, and that the graph will
satisfy the postcondition.

The axiom [nonapp] is excluded from our proof system for total correctness,
as {¬App(R)} R {false} does not hold in the sense of total correctness. Suppose
that it did. Then R would never fail on graphs satisfying the precondition. But
satisfying ¬App(R) implies that R fails on that graph – a contradiction.

6 Example Proofs

In this section, we return to the example graph programs from Section 3, and
demonstrate how to prove (weak) total correctness properties using our revised
proof calculus.

First, we revisit the program colouring of Figure 1. Though the program
contains no failure points (since if a rule schema under as-long-as-possible iter-
ation cannot be applied, the execution simply moves on), the iteration operator
can introduce non-termination. In [12] we proved that ⊢par {c} colouring {d ∧

9

¬App({inc})}, where c expresses that every node is integer-labelled, and d ∧
¬App({inc}) expresses that the graph is properly coloured. In Figure 5, we
strengthen this to ⊢tot {c} colouring {d ∧ ¬App({inc})}, i.e. if the program
is executed on a graph containing only integer-labelled nodes, then a graph will
eventually be returned and that graph will be properly coloured. Note that the
E-conditions resulting from Pre, implications in instances of [cons], and their
justifications, are omitted to preserve space – but can be found in [12].

[ruleapp] {Pre(init, e)} init {e}
[cons] ⊢par {e} init {e} X
[!]tot {e} init! {e ∧ ¬App({init})}

[cons] {c} init! {d}

[ruleapp] {Pre(inc, d)} inc {d}
[cons] ⊢par {d} inc {d} Y
[!]tot {d} inc! {d ∧ ¬App({inc})}

[comp] ⊢tot {c} init!; inc! {d ∧ ¬App({inc})}

X : init is #1-decreasing under e; Y : inc is #2-decreasing under d

c = ¬∃(a | not type(a) = int)

d = ∀(a
1
, ∃(a

1
| a = b c and type(b, c) = int))

e = ∀(a
1
, ∃(a

1
| type(a) = int)

∨∃(a
1
| a = b c and type(b, c) = int))

¬App({init}) = ¬∃(x | type(x) = int)

¬App({inc}) = ¬∃(x i y i
k | type(i, k, x, y) = int)

Fig. 5. A proof tree for the program colouring of Figure 1

The key revision in the proof tree is in the two uses of [!]tot, which unlike its
partial correctness counterpart requires the definition of termination functions.
For init, we define #1 : G(L) → N to map graphs to the number of their nodes
labelled by a single integer. The rule schema is clearly #-decreasing under e,
since every application of init reduces by one the number of nodes with such
labels. The rule schema inc however requires a less obvious termination function
#2 : G(L) → N. For a graph G ∈ G(L), we define:

#2G =

|VG|−1∑

i=0

i−
∑

v∈VG

tag(v)

where tag(v) for a node v returns the tag of its label (that is, the second element
of a sequence x i). We show that inc is #2-decreasing under d (rather, under

10

any E-condition). Observe that if G is a graph with tag(v) = 0 for every node v,
then for every derivation G ⇒∗

inc H there is some 0 ≤ k ≤ |VH | − 1 such that k
is the largest tag in VH . We obtain an upper bound for the second summation:

∑

v∈VH

tag(v) < 1 + 2 + · · ·+ |VH | = 1 + 2 + · · ·+ |VG|.

Since this summation equals the number of rule schema applications in
G ⇒∗

inc H, by subtracting it from the upper bound, we have a termination
function that decreases towards 0 after every application of inc, hence is suit-
able for our proof tree.

Now, we return to the program reachable? of Figure 2, which unlike earlier,
can fail on some input graphs (in particular, those graphs omitting the pair
of 1- and 2-tagged nodes). We give a proof tree1 for the program in Figure 7,
where the E-conditions are as in Figure 6, showing ⊢tot {c∧ d} reachable? {c∧
d}. This means that if the program is executed on a graph that contains only
integer-labelled nodes but with one tagged 1 and another tagged 2, then (1)
the program is guaranteed to return a graph eventually, and (2) that graph will
satisfy the same condition (i.e. an invariant). Again, due to space limitations,
we have omitted the implications in instances of [cons] and their justifications.
We have also omitted from Figure 6 the E-conditions Pre(addlink, d ∧ e) and
Pre(undo, d ∧ e). Rather, we note that these are very similar to Pre(prop, d ∧ e)
which is given.

In this proof tree, there are simple suitable termination functions #p,#u. We
define the termination function #p : G(L) → N (resp. #u) to return the number
of nodes in a graph that are labelled by an integer (resp. number of integer-
labelled nodes tagged with a 0). That is, both termination functions exploit
that each application of their respective rule schemata reduces the number of
remaining matches.

The rule schema addlink is the program’s only potential failure point, and
is addressed in the proof tree by the application of [ruleset]tot. It must be shown
that the precondition at that point implies the applicability of addlink. From
Figure 6, it is clear that satisfying e is sufficient to deduce the applicability of
addlink.

7 Soundness and Completeness for Termination

In this section we revise our soundness proof from [12] to account for (weak) total
correctness, before showing that any iterating rule schemata set that terminates
can be proven to terminate by the rule [!]tot. The proofs use GP’s semantic
inference rules which are given in [12].

Theorem 1 (Soundness of ⊢wtot). For all graph programs P and E-conditions
c, d, we have that ⊢wtot {c} P {d} implies |=wtot {c} P {d}. ⊓⊔
1 For simplicity we use an obvious additional axiom [skip]: ⊢tot {c} skip {c}. We could
have used the core proof rules since skip is syntax for the rule schema ∅ ⇒ ∅.

11

c = ∃(x 1
1

y 2
2
| type(x, y) = int,¬∃(x 1

1

y 2
2

p q))

d = ¬∃(x | not x = y z and not type(x) = int)

e = ∃(x 1 y 2 | type(x, y) = int) ∧ ¬∃(x 1 y 2 p q | not q = 0)

App({reachable}) = ∃(x y z 2
a

| type(a, x, y, z) = int)

App({addlink}) = ∃(x 1 y 2 | type(x, y) = int)

¬App({prop}) ≡ ¬∃(x y z
a

| type(a, x, y, z) = int and (y = 1 or y = 0))

¬App({undo}) = ¬∃(x 0 | type(x) = int)

Pre(prop, d ∧ e) ≡ ∀(x y z
a

| type(a, x, y, z) = int and (y = 1 or y = 0),

¬∃(x y z k
a

| not k = l m and not type(k) = int)

∧ (∃(x y z k 2
a

| y = 1) ∨ ∃(x y z k 1 m 2
a

))

∧ ¬∃(x y z k 2 p q
a

| y = 1 and not q = 0)

∧ ¬∃(x y z k 1 m 2
a

| not y = 0)

∧ ¬∃(x y z k 1 m 2 p q
a

| not q = 0)

Fig. 6. Partial list of E-conditions for Figure 7

Proof. For all weak total correctness proof rules except [!]tot, this follows from
(1) the soundness result for partial correctness in [12], and (2) the semantics of
graph programs, from which it is clear that only as-long-as-possible iteration can
introduce divergence.

Let R be a set of (conditional) rule schemata, inv an E-constraint, and #
a termination function. Assume ⊢par {inv} R {inv}. By soundness for partial
correctness, we have |=par {inv} R! {inv∧¬App(R)}. Assume also that R is #-
decreasing under inv. By Definition 5, for all graphs G,H ∈ G(L) with G |= inv
and H |= inv, G ⇒R H implies #G > #H. Assume that R diverges for any such
G. Since R is #-decreasing under inv, every derivation step yields a graph for
which # returns a smaller natural number. Since R diverges, there are infinitely
many derivation steps. But from any natural n, there are only finitely many
smaller numbers. A contradiction. It cannot be the case that R diverges from
any such G. Hence |=wtot {inv} R! {inv ∧ ¬App(R)}. ⊓⊔
Theorem 2 (Soundness of ⊢tot). For all graph programs P and E-conditions
c, d, we have that ⊢tot {c} P {d} implies |=tot {c} P {d}. ⊓⊔
Proof. For the proof rules [comp], [cons], [if], [!]tot, this follows from (1) the
soundness of ⊢wtot (see Theorem 1), and (2) the semantics of graph programs,
from which it is clear that these proof rules are sound in the sense of total
correctness. What remains to be shown is the soundness of [ruleset]tot in the
sense of total correctness.

LetR denote a set of (conditional) rule schemata and c, d denote E-constraints.
Assume that ⊢par {c} r {d} for each r ∈ R. Then by soundness for partial cor-

12

Let P = if reachable then skip else addlink

[ruleapp] {Pre(prop, d ∧ e)} prop {d ∧ e}
[cons] ⊢par {d ∧ e} prop {d ∧ e} prop is #p-decreasing under d ∧ e

[!]tot {d ∧ e} prop! {d ∧ e ∧ ¬App({prop})}
[cons] {c ∧ d} prop! {d ∧ e} X

[comp] ⊢tot {c ∧ d} prop!; P ; undo! {c ∧ d}

Subtree X:

[skip] {d ∧ e} skip {d ∧ e}
[cons] {d ∧ e ∧App({reachable})} skip {d ∧ e} Y

[if] {d ∧ e} P {d ∧ e}

[ruleapp] {Pre(undo, d ∧ e)} undo {d ∧ e}
[cons] ⊢par {d ∧ e} undo {d ∧ e} undo is #u-decreasing under d ∧ e

[!]tot {d ∧ e} undo! {d ∧ e ∧ ¬App({undo})}
[cons] {d ∧ e} undo! {c ∧ d}

[comp] {d ∧ e} P ; undo! {c ∧ d}

Subtree Y :

d ∧ e ∧ ¬App({reachable}) ⇒ App({addlink})

[ruleapp] {Pre(addlink, d ∧ e)} addlink {d ∧ e}
[cons] ⊢par {d ∧ e ∧ ¬App({reachable}} addlink {d ∧ e}

[ruleset]tot {d ∧ e ∧ ¬App({reachable})} addlink {d ∧ e}

Fig. 7. Total correctness proof tree for the program reachable? of Figure 2

13

rectness, we have |=par {c} R {d}. Now assume the validity of c ⇒ App(R).
Then if a graph G ∈ G(L) satisfies c, by assumption it will satisfy App(R).
By Proposition 7.1 of [12], there is a graph H such that G ⇒R H. Then the
semantic rule [Call1]SOS will be applied (and in particular, [Call2]SOS will not
be), hence a graph is guaranteed from the execution and failure is avoided. We
yield |=tot {c} R {d}. ⊓⊔

Now, we show that every iterating set of rule schemata that terminates can be
proven to terminate using [!]tot, by showing that there always exists a termination
function for which the rule schemata set is decreasing under its invariant.

Theorem 3 (Completeness of [!]tot for termination). Let R be a set of
conditional rule schemata and c be an E-constraint such that for every graph
G in G(L), G |= c implies that R! cannot diverge from G. Then there exists a
termination function # such that R is #-decreasing under c. ⊓⊔

Proof. Let G be a graph such that G |= c. Then there cannot exist an infinite
sequence G ⇒R G1 ⇒R G2 ⇒R . . . as otherwise, by the semantics of GP, there
would be an infinite sequence 〈R!, G〉 → 〈R!, G1〉 → 〈R!, G2〉 . . . To define
the termination function #, we show that the length of ⇒R-derivations starting
from G is bounded. (Note that, in general, a terminating relation need not be
bounded.)

We exploit that ⇒R is closed under isomorphism in the following sense:
given graphs M,M ′, N and N ′ such that M ∼= M ′ and N ∼= N ′, then M ⇒R N
implies M ′ ⇒R N ′. Hence we can lift ⇒R to a relation on isomorphism classes
of graphs by defining: [M] ⇒R [N] if M ⇒R N . Then, since R is finite, for every
isomorphism class [M] the set {[N] | [M] ⇒R [N]} is finite.

Now, since there is no infinite sequence of ⇒R-steps starting from [G], it
follows from König’s lemma [9] that the length of ⇒R-derivations starting from
[G] is bounded. (In the tree of all derivations starting from [G], all nodes have
a finite degree. Hence the tree cannot be infinite, as otherwise it would contain
an infinite derivation.) Hence the length of ⇒R-derivations starting from G is
bounded as well. In general, given any graph M in G(L), let #M be the length
of a longest ⇒R-derivation starting from M if M |= c, and #M = 0 otherwise.
Then if M,N |= c and M ⇒R N , we have #M > #N . Thus R is #-decreasing
under c. ⊓⊔

8 Conclusion

In this paper we have presented two Hoare calculi which allow one to prove
(weak) total correctness. Both proof systems have been shown to be sound.
We have shown how to reason about termination via termination functions,
and shown that the proof rule for termination is complete in the sense that all
terminating loops (having a set of conditional rule schemata as the body) can
be proven to be terminating. Finally, we have demonstrated the use of the proof

14

systems on two non-trivial graph programs, showing how to prove the absence
of divergence and failure.

Future work will explore how to implement the proof calculi in an interac-
tive proof system. A first step towards this was made in [13], where translations
from E-conditions to many-sorted formulae (and back) were defined, providing a
suitable front-end logic for an implemented verification system. Future work will
also address the question of whether or not the calculi are (relatively) complete.
It would also be worthwhile to integrate a stronger assertion language into the
calculi that can express non-local properties.

Acknowledgements. We are grateful to the anonymous referees for their help-
ful comments.

References

1. Krzysztof R. Apt. Ten years of Hoare’s logic: A survey part II: Nondeterminism.
Theor. Comput. Sci., 28:83–109, 1984.

2. Paolo Baldan, Andrea Corradini, and Barbara König. A framework for the verifica-
tion of infinite-state graph transformation systems. Information and Computation,
206(7):869–907, 2008.

3. Dénes Bisztray, Reiko Heckel, and Hartmut Ehrig. Compositional verification of
architectural refactorings. In Proc. Architecting Dependable Systems VI (WADS
2008), volume 5835, pages 308–333. Springer-Verlag, 2009.

4. Simone André da Costa and Leila Ribeiro. Verification of graph grammars using
a logical approach. Science of Computer Programming, 77(4):480–504, 2012.

5. Annegret Habel and Karl-Heinz Pennemann. Correctness of high-level transforma-
tion systems relative to nested conditions. Mathematical Structures in Computer
Science, 19(2):245–296, 2009.

6. Annegret Habel, Karl-Heinz Pennemann, and Arend Rensink. Weakest precondi-
tions for high-level programs. In Proc. International Conference on Graph Trans-
formation (ICGT 2006), pages 445–460. Springer-Verlag, 2006.

7. Annegret Habel and Detlef Plump. Relabelling in graph transformation. In Proc.
International Conference on Graph Transformation (ICGT 2002), volume 2505,
pages 135–147. Springer-Verlag, 2002.

8. Barbara König and Javier Esparza. Verification of graph transformation systems
with context-free specifications. In Proc. Graph Transformations (ICGT 2010),
volume 6372, pages 107–122. Springer-Verlag, 2010.

9. Dénes König. Sur les correspondances multivoques des ensembles. Fundamenta
Mathematicae, 8:114–134, 1936.

10. Detlef Plump. Termination of graph rewriting is undecidable. Fundamenta Infor-
maticae, 33(2):201–209, 1998.

11. Detlef Plump. The graph programming language GP. In Proc. Algebraic Infor-
matics (CAI 2009), volume 5725, pages 99–122. Springer-Verlag, 2009.

12. Christopher M. Poskitt and Detlef Plump. Hoare-style verification of graph pro-
grams. Fundamenta Informaticae, 118(1-2):135–175, 2012.

13. Christopher M. Poskitt, Detlef Plump, and Annegret Habel. A many-sorted logic
for graph programs, 2012. Submitted for publication.

15

HR∗ graph conditions between counting monadic
second-order and second-order graph formulas

Hendrik Radke

Universität Oldenburg hendrik.radke@uni-oldenburg.de

Abstract. Graph conditions are a means to express structural prop-
erties for graph transformation systems and graph programs in a large
variety of application areas. With HR∗ graph conditions, non-local graph
properties like “there exists a path of arbitrary length” or “the graph is
circle-free” can be expressed. We show, by induction over the structure
of formulas and conditions, that (1) any node-counting monadic second-
order condition can be expressed by an HR∗ condition and (2) any HR∗

condition can be expressed by a second-order graph formula.

1 Introduction

In order to develop trustworthy systems, formal methods play an important role.
Visual modeling techniques help to understand complex systems. It is therefore
desirable to combine visual modeling with formal verification. The approach
taken here is to use graphs and graph transformation rules [5] to model states
and state changes, respectively. Structural properties of the system are described
by graph conditions.

In [7, 9], nested graph conditions have been discussed as a formalism to de-
scribe structural properties in a visual and intuitive way.

Nested graph conditions are expressively equivalent to first-order graph for-
mulas and can express local properties in the sense of Gaifman [6]. However,
there are many interesting non-local graph properties like the existence of an
arbitrary-length path between two nodes, connectedness or circle-freeness of the
graph. Several logics and languages have been developed to express such non-
local properties. In [1], a modal logic is described which uses monadic second-
order formulas to describe state properties and temporal modalities to describe
behavioural properties. A linear temporal logic is used in [11], including the
monadic second-order quantification over sets of nodes. In [2], a logic is intro-
duced that can quantify over subobjects of a categorical object. For the category
of graphs, this logic is as expressive as monadic second-order logic on graphs. The
idea of enhancing nested conditions with variables which are later substituted is
also used for the E-conditions in [10].

We showed in [8] that a variant of HR∗ graph conditions is more expressive
than monadic second-order graph formulas. However, an upper bound on the
expressiveness of HR∗ conditions remained an open question. This paper gives
both a tighter lower and an upper bound for HR∗ conditions. We will show

16

that HR∗ conditions are at least as strong as node-counting monadic second
order formulas, and that every HR∗ condition can be expressed as a formula in
second-order logic on graphs.

The paper is organized as follows: In section 2, we will give the necessary
definitions for HR∗ graph conditions, along with some examples. In section 3,
we introduce second-order graph formulas. We then show that HR∗ conditions
can express every node-counting monadic second-order formula in section 4. The
construction of a second-order graph formula from an HR∗ graph condition is
then given step-by-step, along with some examples, in section 5. We discuss the
results in the concluding section 6.

2 HR∗ conditions

HR∗ conditions combine the first-order logical framework and graph morphisms
from nested conditions [7] with hyperedge replacement to represent context-free
structures of arbitrary size.

Hyperedges relate an arbitrary, fixed number of nodes and are used in HR∗

conditions as variables, which are later substituted by graphs. We extend the
concept of directed, labeled graphs with hyperedge variables, which can be seen
as placeholders for graphs to be added later.

Definition 1 (graph with variables). Let C be a fixed, finite alphabet of set
and edge labels and X a set of variables with a mapping rank: X → N1 defining
the rank of each variable.
A graph with variables over C is a system G = (VG,EG,YG, sG, tG, attG, lG, lyG)
consisting of finite sets VG, EG, and YG of nodes (or vertices), edges, and hy-
peredges, source and target functions sG, tG : EG → VG, an attachment function
attG : YG → V∗G

2, and labeling functions lG : VG ∪ EG → C, ly : YG → X such
that, for all y ∈ YG, | attG(y)| = rank(lyG(y)). We call the set of all graphs with
variables GX . A graph G is empty iff VG = ∅ and YG = ∅, denoted ∅. Let GH
be the graph G with subgraph H removed.

Example 1. Consider the graphs G,H in Figure 1 over the label alphabet C =
{A,B,�} and X = {u, v} where the symbol � stands for the invisible edge
label and is not drawn and X = {u, v} is a set of variables that have rank 4
and 2, respectively. The graph G contains five nodes with the labels A and B,
respectively, seven edges with (invisible) label �, and one hyperedge of rank 4
with label u. Additionally, the graphH contains a node, an edge, and a hyperedge
of rank 2 with label v.

Nodes are drawn as circles carrying the node label inside, edges are drawn
by arrows pointing from the source to the target node and the edge label is
placed next to the arrow, and hyperedges are drawn as boxes with attachment

1 N denotes the set of natural numbers, including 0.
2 This also includes hyperedges with zero tentacles.

17

B

A

B

BB

u
1

2 3

4

G

↪→g

B

A

B

BB B

u
1

2 3

4

v
1 2

H

Fig. 1. Graph morphisms with variables

nodes where the i-th tentacle has its number i written next to it and is attached
to the i th attachment node and the label of the hyperedge is inscribed in the
box. Nodes with the invisible � label are drawn as points (•). For visibility

reasons, we may abbreviate hyperedges of rank 2 by writing • •x instead of
• •x1 2 .

Graph morphisms consist of structure-preserving mappings between the sets
of nodes, edges and hyperedges of graphs.

Definition 2 (graph morphism with variables). A (graph) morphism (with
variables) g : G → H consists of functions gV : VG → VH , gE : EG → EH , and
an injective mapping gY : YG ↪→ YH that preserve sources, targets, attachment
nodes and labels, i.e. sH ◦gE = gV ◦ sG, tH ◦gE = gV ◦ tG, attH = g∗V ◦ attG,
lH ◦gV = lG, lH ◦gE = lG, and lyH ◦gY = lyG

3.
The composition h ◦ g of g with a graph morphism h : H → M consists of

the composed functions hV ◦ gV, hE ◦ gE, and hY ◦ gY. A morphism g is injective
(surjective) if gV, gE, and gY are injective (surjective), and an isomorphism if
it is both injective and surjective. In the latter case G and H are isomorphic,
which is denoted by G ∼= H. An injective graph morphism m : G ↪→ H is an
inclusion, written G ⊆ H, if VG ⊆ VH , EG ⊆ EH and YG ⊆ YH . For a graph
G, the identity idG : G → G consists of the identities idGV, idGE, and idGY on
GV, GE, and GY, respectively.

Arbitrary graph morphisms are drawn by the usual arrows “→”; the use of
“↪→” indicates an injective graph morphism. The actual mapping of elements is
conveyed by indices, if necessary.

The hyperedges are replaced by graphs according to a hyperedge replacement
system. To describe how the original graph and the graph which replaces a
hyperedge are connected, we need to map each tentacle of the hyperedge to a
node in the latter graph.

Definition 3 (pointed graph with variables). A pointed graph with vari-
ables 〈G,pinG〉 is a graph with variables G together with a sequence pinG =
v1 . . . vn of pairwise disjoint nodes from G. We write rank(〈G,pinG〉) for the
number n of nodes. For x ∈ X with rank(x) = n, x• denotes the pointed

3 For a mapping g : A→ B, the free symbolwise extension g∗ : A∗ → B∗ is defined by
g∗(a1 . . . ak) = g(a1) . . . g(ak) for all k ∈ N and ai ∈ A (i = 1, . . . , k).

18

graph with the nodes v1, . . . , vn, one hyperedge attached to v1 . . . vn, and sequence
v1 . . . vn. Pin(G) denotes the set of pinpoints of 〈G,pinG〉.

Definition 4 (hyperedge replacement system). A hyperedge replacement
(HR) system R is a finite set of replacement pairs of the form x/R where x is
a variable and R a pointed graph with rank(x) = rank(R).

Given a graph G, the application of the replacement pair x/R ∈ R to a
hyperedge y with label x proceeds in two steps (see Figure 2): For a set X, let
G −X be the graph G with all elements in X removed, and for a graph H, let
G+H be the disjoint union of G and H.

1. Remove the hyperedge y from G, yielding the graph G−{y}.
2. Construct the disjoint union (G−{y}) +R and fuse the i th node in attG(y)

with the i th attachment point of R, for i = 1, . . . , rank(y), yielding the
graph H.

G directly derives H by x/R ∈ R applied to y, denoted by G ⇒x/R,y H
or G ⇒R H. A sequence of direct derivations G ⇒R . . . ⇒R H is called a
derivation from G to H, denoted by G ⇒∗R H. For every variable x, R(x) =
{G ∈ GX | x• ⇒∗R G} denotes the set of all graphs derivable from x• by R.

•

• •

•
G−{y} x

1

2 3

4 •

• •

•1

2 3

4

G−{y} R

Fig. 2. Application of replacement pair x/R.

Example 2. The hyperedge replacement systemR with the rules given in Backus-
Naur form

•
1
•
2

+ ::= •
1
•
2
| •

1
• •

2

+

generates the set of all directed paths from node 1 to node 2.

In HR∗ conditions, we simultaneously substitute all hyperedges by graphs,
which are generated according to a hyperedge replacement system.

Definition 5 (substitution). A substitution induced by a hyperedge replace-
ment system R is a mapping σ : X → G with σ(x) ∈ R(x) for all x ∈ X . The set
of all substitutions induced by R is denoted by Σ. The substitution of a hyperedge
y with label x in a graph G by σ(x) is obtained from G by removing y from G,
constructing the disjoint union (G− {y}+ σ(x) and then fusing the ith node in

19

G− YG

•

•

•
•

•

•

•
•

•
••

•

x1

1

2

x 1

2
3

x 1

2

3

x2

1

2

3
4

σ
=⇒ G− YG

•

•

•
•

•

•

•
•

•
••

•

R1

R

R

R2

Fig. 3. Substitution of hyperedges.

attG(y) with the ith point of σ(x) for i ∈ [rank(y)]4. Application of σ to a graph
G, denoted G ⇒ Gσ, is obtained by simultaneous substitution of all hyperedges
in y ∈ YG by σ(lyG(y)) (Figure 3).

With the preliminaries done, we can now define HR∗ conditions. They allow
one to use variables for structures of arbitrary size, and to “peek into” such
variables and formulate properties of the graphs that the variable is substituted
by.

Definition 6 (HR∗ graph condition). A HR∗ (graph) conditions (over R)
consists of a condition with variables and a replacement system R. Conditions
are inductively defined as follows.

1. For a graph P , true is a condition over P .
2. For an injective morphism a : P ↪→ C and a condition c over C, ∃(a, c) is a

condition over P .
3. For graphs P,C and a condition c over C, ∃(P w C, c) is a condition over P .
4. For an index set J and conditions (cj)j∈J over P , ¬c1 and ∧j∈Jcj are con-

ditions over P 5.

HR∗ conditions c over R are denoted by 〈c,R〉, or c if R is clear from the context.
A HR∗ condition is finite if every index set J in the condition is finite; we will
assume finite conditions in the following if not explicitly stated otherwise.

The following abbreviations are used: ∃a abbreviates ∃(a, true), ∀(, c) abbre-
viates ¬∃(,¬c), false abbreviates ¬true, and ∨j∈Jcj abbreviates ¬ ∧j∈J ¬cj .
The domain of a morphism may be omitted if no confusion arises: ∃C can replace
∃(P ↪→ C) in this case.

Example 3. The following HR∗ condition intuitively expresses “There exists a
path from the image of node 1 to the image of node 2”.

∃(•
1

•
2

+) with •
1
•
2

+ ::= •
1
•
2
| •

1
• •

2

+

4 [k] denotes the set {1, . . . , k} of natural numbers up to k.
5 Usually, J is a set of natural numbers from 1 to some number k.

20

We now give the formal semantics for HR∗ conditions.

Definition 7 (satisfaction of HR∗ conditions). Given a hyperedge replace-
ment system R, a morphism p : Pσ ↪→ G, the satisfaction of a condition by a
substitution σ ∈ Σ is inductively defined as follows.

(1) p satisfies true.
(2) p satisfies ∃(a, c) for a morphism a : P ↪→ C if there is an injective morphism

q : Cσ ↪→ G such that q ◦ aσ = p and q satisfies cσ6 (left figure).

Pσ Cσ , cσ)

G

aσ

p q

∃(
|==

Pσ Cσ

G

∃(, cσ)

|=p q

b

=

(3) p satisfies ∃(P w C, c) if there are an inclusion b : Cσ ↪→ Pσ and an injective
morphism q : Cσ ↪→ G such that p◦b = q and q satisfies c by σ (right figure).

(4) p satisfies ¬c if p does not satisfy c. p satisfies ∧i∈I ci if p satisfies all ci
(i ∈ I).

A graph G satisfies a condition c over ∅ if the morphism ∅ ↪→ G satisfies c.
We write G |=σ c to denote that a graph G satisfies c by σ and G |= c if there is
a σ ∈ Σ such that G |=σ c.

Example 4. The following example shows a HR∗ condition intuitively expressing
“There is a path from a node to another, and all nodes on this path have at least
three outgoing edges to different nodes”.

∃(•
1

•
2

+

︸ ︷︷ ︸
(1)

, ∀(•
1

•
2

+ w •
3︸ ︷︷ ︸

(2)

,∃ •
3

• • •
))

︸ ︷︷ ︸
(3)

with •
1
•
2

+ ::= •
1
•
2
| •

1
• •

2

+

In subformula (1), the existence of the path is established. Part (2) quantifies
over every node that is contained in the path, while part (3) ensures that each
such node has three outgoing edges to different nodes.

In logical formulas, distinct variables do not necessarily mean distinct objects:
one has to explicitly state that two variables x, y stand for distinct objects with
a formula ¬x .

= y. Nodes and edges in HR∗ conditions, on the other hand, are
distinct by default. This can also be done with a variant on the semantics of
HR∗ conditions, A-satisfaction.

Definition 8 (A-satisfiability). A morphism p : P → G A-satisfies a HR∗

formula c, short p |=A c, as per definition 7, except for c = ∃(a : P → C, c):
p |= ∃(a, c) if there exists a (possibly non-injective) morphism q : C → G such
that p = q ◦ a and q |= c.

6 aσ : Pσ ↪→ Cσ is the morphism induced by σ from a. cσ is σ applied to c in a similar
fashion.

21

The consequence of this definition is that nodes and edges in A-satisfiable
HR∗ conditions are no longer disjoint by default, but may be unified.

Lemma 1 (A-satisfaction). For every HR∗ condition c, there is a HR∗ con-
dition CondA(c) such that for every graph G,

G |= c ⇐⇒ G |=A CondA(c).

The construction of CondA is quite straightforward: To any HR∗ condition
∃(P ↪→ C, c), a subcondition is added that forbids the unification of distinct
nodes and edges in C.

Construction 1. For a condition over P , CondA is inductively defined:

1. CondA(true) = true.
2. CondA(∃(P→C, c)) = ∃(P→C, c∧ ∀(C w ••,@(••→•))∧ ∀(C w

•
•,@(••→

•
•))).

3. CondA(∃(P w C, c)) = ∃(P w C, c).
4. CondA(¬c) = ¬CondA(c) and CondA(

∧
i∈I ci) =

∧
i∈I CondA(ci).

Proof. For conditions true, ∃(P w C, c), ¬c and
∧
i∈I ci, the proof is trivial as

CondA does not change the condition. For a condition ∃(P ↪→ C, c) and graph
G ∈ G, we can directly transform the statement that two objects d, d′ must be
injective into a condition that fits our construction:

G |= ∃(P ↪→ C, c)
⇔ ∃σ, q : Cσ ↪→ G.p = q ◦ aσ ∧ q |= cσ (Def. 7)
⇔ ∃σ, q : Cσ → G.p = q ◦ aσ ∧ q |= cσ∧

@d, d′ ∈ DC .d 6= d′ ∧ q(d) = q(d′) (q injective)
⇔ ∃σ, q : Cσ → G.p = q ◦ aσ ∧ q |= cσ∧

@C ′ ⊆ C.@d, d′ ∈ DC′ .d 6= d′ ∧ q(d) = q(d′)
⇔ ∃σ, q : Cσ → G.p = q ◦ aσ ∧ q |= cσ∧

q |= @(•• → •) ∧ ∀(C w
•
•,@(•• →

•
•)) (Constr. 1)

⇔ G |=A CondA(c). (Def. 8)

�

Furthermore, for A-satisfiability, substitution of hyperedges (i.e. all edges
with the same label are replaced by isomorphic graphs) is equivalent to replace-
ment of hyperedges (i.e. edges with the same label may be replaced by different
graphs). It is easy to see that, for every HR∗ condition using replacement, an
equivalent HR∗ condition can be constructed using substitution, simply by giving
each hyperedge a unique label and cloning the rules.

On the other hand, it is possible to simulate substitution with replacement,
using the following construction idea: For every HR∗ condition ∃(P + x →
P + x x , c) (the x-labeled hyperedges may have arbitrary many tentacles), we

add ∃(P + x → P + x x ,∃(P + x x w P + x2 ∧ c), where x2 has both

hyperedges combined into a single one, and modify the grammar to perform

22

rules in parallel. For conditions ∃(P + x , c1) ∧ ∃(P + x , c2), we modify to
∃(P + x2 ,∃P + x2 w P + x , c1) ∧ ∃P + x2 w P + x , c2) and modify the

grammar as in the first case.

Example 5. The HR∗ condition withA substitution semantics ∃(•
1

•
2

+ ,@(•
1
•
2•

3
•
4

+
+)

with •
1

•
2

+ ::= •
1

•
2
| •

1
• •

2

+ is equivalent to the HR∗ condition with A
replacement semantics

∃(•
1

•
2

+ ,@(•
1

•
2•

3
•
4

+
+ ,∃•

1
•
2•

3
•
4

+
+ w

•
1

•
2

•
3

•
4

+2

1 2

3 4

with

•
1

•
2

•
3

•
4

+2

1 2

3 4

::=

•
1

•
2

•
3

•
4

| •1 • •2

•
3

• •
4

+2

1 2

3 4

.

Remark 1. The idea of enhancing nested conditions with variables is also used in
[10] for E-conditions. In contrast to HR∗ conditions, the variables in E-conditions
are not substituted by graphs, but by labels or attributes, so E-conditions cannot
express non-local conditions, but can work with infinite label alphabets (e.g.
natural numbers) and perform calculations on attributes.

3 Graph formulas

A classic approach to express properties of a graph is to use logical formulas over
graphs. The expressiveness of such formulas depends on the underlying logic. We
begin with the definition of second-order graph formulas, following [4]. Second-
order formulas can quantify over individual objects in the underlying universe,
as well as over arbitrary relations over the underlying universe, allowing one
to formulate many interesting graph properties. For a comparative overview on
the power of several graph logics, see [3]; our definition of second-order logic is
equivalent to that in [3], except that we also consider node and edge labels.

Definition 9 (second-order graph formulas). Let C be a set of labels, V1 be
a (denumerable) set of individual (or first-order) variables x0, x1, . . . and V2 a
(denumerable) set of relational (or second-order) variables X0, X1, . . ., together
with a function rank: V2 → N−{0} that maps to each variable in V2 a positive
natural number, its rank. We let V = V1 ∪ V2 be the set of all variables.

Second-order graph formulas, short SO formulas, are defined inductively:
inc(x, y, z), labb(x) and x

.
= y are SO graph formulas for individual variables

x, y, z ∈ V1 and labels b ∈ C. For any variable x ∈ V1 and SO formula F , ∃x.F
is an SO formula. Also, for any variable X ∈ V2 with rank(X) = k and SO for-
mulas F1, . . . , Fk, X(F1, . . . , Fk) is an SO formula. Finally, Boolean expressions
over SO formulas c, d are SO formulas: true, ¬F , F1 ∧ F2.

For a non-empty graph G, let D×G be the set of all relations over DG =
VG ∪EG. The semantics G[[F]](θ) of a SO formula F under assignment θ : V →
DG ∪D×G is inductively defined as follows:

23

1. G[[labb(x)]](θ)=true iff θ(x)= lvG(b) or θ(x)= leG(b),
G[[inc(e, x, y)]](θ) = true iff θ(e) ∈ EG, sG(θ(e)) = θ(x), and tG(θ(e)) =
θ(y), and
G[[x

.
= y]](θ) = true iff θ(x) = θ(y).

2. G[[true]](θ) = true, G[[¬F]](θ) = ¬G[[F]](θ), G[[F ∧ F ′]](θ) = G[[F]](θ) ∧
G[[F ′]](θ), and
G[[∃x.F]](θ) = true iff G[[F]](θ{x/d}) = true for some d ∈ DG, where
θ{x/d} is the modified assignment with θ{x/d}(y) = d if x = y and θ{x/d}(y) =
θ(y) otherwise.

3. G[[∃X.F]](θ) = true iff G[[F]](θ{X/D}) = true for some d ∈ D×G.
G[[X(F1, . . . , Fk)]](θ) = true iff (G[[F1]](θ), . . . , G[[Fk]](θ)) ∈ θ(X).

4. G[[¬F]](θ) = ¬G[[F]](θ) and G[[F ∧ F ′]](θ) = G[[F]](θ) ∧G[[F ′]](θ).

A non-empty graph G satisfies a SO formula F , denoted by G |= F , iff, for all
assignments θ : V → DG ∪D×G, G[[F]](θ) = true.

Example 6. The SO formula below is true for every graph which has a non-trivial
automorphism7:

∃X.[βinj(X) ∧ βtotal(X) ∧ βsurj(X) ∧ βntriv(X) ∧ βpredg(X)]

where the subformulas are defined as follows:

– βinj(X) = ∀x, y, z.(X(x, y)∧X(x, z))⇒ y
.
= z∧ (X(x, z)∧X(y, z))⇒ x

.
= y

expresses that relation X is injective,
– βtotal(X) = ∀x∃y.X(x, y) expresses that X is total,
– βsurj(X) = ∀x∃y.X(y, x) expresses that X is surjective,
– βntriv(X) = ∃x, y.x 6= y ∧X(x, y) expresses that X is non-trivial,
– βpredg(X) = ∀e, x, y, e, x′, y′.(inc(e, x, y) ∧ (X(e, e′) ∧X(x, x′) ∧X(y, y′))⇒

inc(e′, x′, y′) expresses that X preserves edges, i.e. for every pair of nodes
x, y connected by an edge and related to nodes x′, y′ by relation X, x′ and
y′ are connected by an edge.

Counting monadic second-order graph formulas are a subclass of second-order
graph formulas and an extension of monadic second-order graph formulas [3].
Like monadic second-order graph formulas, they allow quantification over indi-
vidual nodes and edges as well as quantification over unary relations, i.e. sets of
nodes and edges. Furthermore, they have a special quantifier that allows one to
count modulo natural numbers.

Definition 10 (counting monadic second-order graph formulas). A count-
ing monadic second-order graph formula, short CMSO formula, are inductively
defined as follows. Every SO formula where every relational variable X has
rank(X) = 1 is a CMSO formula, and for every natural number m ∈ N and every
CMSO formula F , ∃(m)x.F (x) is a CMSO formula. For a non-empty graph G,

G[[∃(m)x.F (x)]](θ) = true iff |{u ∈ VG ∪ EG : G[[F (u)]](θ)}| ≡ 0 (mod m).

7 i.e. an automorphism which is not the identity

24

A CMSO formula is a node-CMSO formula if counting is only allowed over
nodes, i.e. every subformula ∃(m)x.F is equivalent to ∃(m)x. node(x)∧F ′, where
node(x) = @y, z. inc(x, y, z) states that x is a node. A CMSO formula is a
monadic second-order formula, short MSO formula, if it contains no subfor-
mulas of the form ∃(m)x.F .

Example 7. The node-CMSO formula ∃(2)x. node(x) expresses “The graph has
an even number of nodes”.

4 Expressing node-CMSO formulas with HR∗ conditions

In [8], a variant of HR∗ conditions was introduced and shown to be at least
as strong as MSO formulas. We now go one step further and show that HR∗

formulas can also express arbitrary node-CMSO formulas.

Theorem 1 (node-CMSO formulas to HR∗ conditions). For every node-
CMSO formula F , there is a HR∗ graph condition Cond(F) such that for all
graphs G ∈ G, G |= F iff G |= Cond(F).

We use hyperedge replacement to count the nodes: It is easy to construct
a grammar which generates all discrete graphs (i.e. with no edges) with k ∗m
nodes, where m is a fixed number and k ∈ N is variable. For all nodes inside the
generated subgraph, the property F to be counted is checked. Also, F must not
hold for any node outside of the generated subgraph.

Construction 2. For a graph P and a formula F , Cond(P, F) is defined as
follows. For any MSO formula, Cond is defined as in [8]. Otherwise, i.e. for
formulas of the form ∃(m)v.F ,

Cond(P,∃(m)v.F) = ∃(Y ,∀(Y w •
v
,Cond(F (v))) ∧ @(Y •

v
,Cond(F (v))))

with Y ::= ∅ | Y Dm, where Dm is a discrete graph with m nodes.

Example 8. Take as an example the node-CMSO formula expressing “There is
an even number of nodes”: ∃(2)x.node(x). Using the construction above, this is
transformed into ∃(Y ,∀(Y w •

1
,∃(•

1
)) ∧ @(Y •

2
,∃(•

2
))) with Y ::= ∅ | Y ••

Simplification of the HR∗ condition yields ∃(Y ,@(Y •
2
)) with Y ::= ∅ | Y ••.

Proof. For MSO formulas, see the proof in [8]. For formulas ∃(m)x.φ(x) and every
graph G, assume that G |= φ(x) ⇐⇒ G |= Cond(φ(x)) and let p : ∅ ↪→ G.

By the definition of HR∗ satisfaction (Def. 7) and construction 2,

G |= Cond(∃(m)x.φ(x))⇔ p |= Cond(∃(m)x.φ(x))
⇔ p |= ∃(∅ ↪→ Y ,∀(Y w •

x
,Cond(φ(x))) ∧ @(Y ↪→ Y •

x
,Cond(φ(x)))).

Performing the substitution of hyperedge Y yields
⇔ ∃n ∈ N.p |= ∃(∅ ↪→ Dn∗m,∀(Dn∗m w •x ,Cond(φ(x)))

∧ @(Dn∗m ↪→ Dn∗m•x ,Cond(φ(x)))).

25

We use the semantics of HR∗ conditions again to get

⇔ ∃n ∈ N.∃Dn∗m
qa
↪→G.p = qa ◦ a∧

∀∅ qb↪→•
x
.qb(•

1
) ⊆ qa(Dn∗m) ∧ qb |= Cond(φ(x))σ∧

@(Dn∗m + •
x

qc
↪→G.qa = qc ◦ c ∧ qc |= Cond(φ(x))σ)

and, by the definition of graph morphisms,
∃n ∈ N.∃Dn∗m ⊆ G.∀(•

1
⊆ Dn∗m.•x |= Cond(φ(x))σ)

∧@(Dn∗m + •
x
⊆ G.•

x
|= Cond(φ(x))σ).

Using simple arithmetics and set theory, it is easy to see that
⇔ ∃n ∈ N.|{•

1
⊆ VG | •x |= Cond(φ(x))σ}| ≤ n ∗m

∧¬|{•
1
⊆ VG | •x |= Cond(φ(x))σ}| ≤ n ∗m+ 1

⇔ ∃n ∈ N.|{v ∈ VG : G |= Cond(φ(v))}| = n ∗m
⇔ ∃n ∈ N.|{v ∈ VG : G |= φ(v)}| = n ∗m.
Using the initial assumption and Definition 10, we get
⇔ |{v ∈ VG : G |= φ(v)}| ≡ 0 (mod m)
⇔ G[[∃(m)x.F (x)]](θ) = true

⇔ G |= ∃(m)x.φ(x).

This completes the proof. �

5 Expressing HR∗ conditions with SO formulas

With a lower bound for the expressiveness of HR∗ conditions established, we now
turn to the upper bound and show that every HR∗ condition can be expressed as
a SO formula. The main difficulty here lies in the representation of the replace-
ment process within the formula. The transformation is made somewhat easier
by using a slightly changed semantics for HR∗ conditions. We use replacement
instead of substitution and A-satisfiability.

Since every HR∗ condition can be transformed into an equivalentA-satisfiable
one, we can prove that every HR∗ condition can be expressed as a SO graph
formula, which we will now do step by step.

Theorem 2 (HR∗ conditions to SO formulas). For every HR∗ graph con-
dition c, there is a second-order graph formula SO(c) such that for all graphs
G ∈ G,

G |= c ⇐⇒ G |= SO(c).

We use several helper constructions that we will present and prove individu-
ally later. SOgra(G,F) is used to represent a graph G as a formula, where F is
some nested subformula. SOsys represents the replacement system of the HR∗

condition. Finally, SOset(G,X) is used to collect all nodes and edges in graph Gσ

(i.e. after replacement) inside a set variable X. This is needed to check whether
there is an inclusion Cσ

′
↪→ Pσ for a HR∗ condition ∃(P w C, c).

26

Construction 3. Without loss of generality, P ↪→ C is an inclusion. For a
condition c with HR system R, we let SO(〈c,R〉) = SOsys(R) ∧ SO(c) and
define

1. SO(true) = true.

2. SO(∃(P ↪→ C, c)) = SOgra(C−P,SO(c)).

3. SO(∃(P w C, c)) = SOgra(C,∃XP , XC .SOset(P,XP) ∧ SOset(C,XC) ∧
XC ⊆ XP ∧SO(c)), where XP , XC are fresh second-order variables of rank 1
(i.e. set variables) and the relation ⊆ is constructed in SO logic as usual:
XC ⊆ XP = ∀x.x ∈ XC ⇒ ∃y ∈ XP .x

.
= y.

4. SO(¬c) = ¬SO(c) and SO(
∧
i∈I ci) =

∧
i∈I SO(ci).

The transformation SOgra represents a graph with variables as a formula.
The construction is quite straightforward: we state the existence of every node,
edge and hyperedge and then express each label and the attachment of edges
and hyperedges to the nodes.

Lemma 2. For graphs R ∈ GX and G ∈ G,

G |=A ∃(∅ ↪→ R−YR) ⇐⇒ G |= SOgra(R−YR, true).

Construction 4. For a set A and SO formula F , let ∃F be the existential
closure of F and ∃̇F = ∃F ∧∧a,b∈Aa 6=b (¬a .

= b) be the existential closure of F with
disjointness check. Define the universal closure ∀F analogously. For a graph with
variables G and a SO formula F , we define

SOnod(G,F) = ∃∧v∈VR
lablG(v)(v) ∧ F

SOedg(G) = ∃∧e∈ER
lablG(e)(e) ∧ inc(e, sG(e), tG(e))

SOhyp(G) = ∃̇∧y∈YR
(∃d. lyG(y)(attG(y)1,...,k, d))

SOgra(G,F) = SOnod(G,SOedg(G) ∧ SOhyp(G) ∧ F)

Proof. Assume G |=A ∃(∅ ↪→a RYR
).

By the semantics of HR∗ conditions, for p : ∅ → G, this is equivalent to
⇔ p |=A ∃(∅ →a RYR

)
⇔ ∃q : RYR

→ G.p = q ◦ a ∧ q |=A true.
By the definition of morphisms, this equals
⇔ ∃q : RYR

→ G.∀o ∈ DR.p(o) = q(a(o))
⇔ ∃R′ ∈ G.∃q′ : RYR

→ R′ ∧R′ ⊆ G
which can be expressed as a SO formula
⇔ ∃R′ ∈ G.∃v∈V′

R
.(
∧
v∈V′

R
(labl(v)(v)) ∧ ∃(∧e∈E′

R
(labl(e)(e)) ∧ inc(e, s(e), t(e))))

⇔ ∃R′ ∈ G.SOnod(R′,SOedg(R′) ∧ SOhyp(R′))
which equals the definition of SOgra:
⇔ G |= SOgra(R′, true)
⇔ G |= SOgra(RYR

, true). �

27

In order to translate HR∗ conditions of the form ∃(P w C, c), we need sets
of every object in P and C after the replacement of the hyperedges. This is
achieved by the transformation SOset(G,X), which ensures that every node and
edge in Gσ (after replacement) is member of the set variable X.

Construction 5. For any graph G and unary variable X,

SOset(G,X) =
∧
o∈DG

o ∈ X ∧∧y∈YG
∀d. lyG(y)(attG(y)1,...,k, d)⇒ d ∈ X,

where k = rank(y) is the rank of hyperedge y.

We finally turn to the simulation of the hyperedge replacement process itself.

Lemma 3. For a graph S ∈ GX , hyperedge replacement system R and graph G,

G |=A 〈∃(∅ ↪→ S),R〉 ⇐⇒ G |= SOgra(S) ∧ SOsys(R).

The main idea is to represent hyperedges as relations over nodes. A hyper-
edge with k nodes is represented as a (k + 1)-ary relation, where the first k
elements represent the nodes attached to the hyperedge by its k tentacles. The
last element, d, is used as an adjoint set to capture all nodes and edges that the
hyperedge is replaced by. The latter is needed to collect the set of all elements
in a graph after replacement.

Construction 6. For any replacement pair x/R with rank(x) = k and hyper-
edge replacement system R, let

SOrule(x/R) = ∀v1, . . . , vk.∀d.x(v1, . . . , vk, d)⇒ SOgra(R, true)
SOsys(R) =

∧
x∈X

∨
x/R∈R ∀vi.SOrule(x/R)

Proof. We begin by showing ∃Sσ, q : Sσ → G.S ⇒∗R Sσ ⇐⇒ G |= SOgra(S) ∧
SOsys(R), using induction over the structure of HR∗ conditions.

Base case. By the definition of derivations,
∃Sσ ∈ G, q : Sσ → G.S ⇒R Sσ

⇔ ∃Sσ, q : Sσ → G.∃x/R ∈ R.S ⇒x/R S
σ

⇔ ∃Sσ, q : Sσ → G.∃y ∈ YS . ly(y) = x∧Sσ ∼= Sy ∪R∧∀i ∈ [k].pinRi = attS(y)i
By Lemma 2, we can reduce this to
⇔ ∃y ∈ YS . ly(y) = x ∧G |= SOgra(Sy ∪RPin(R)

,
∧
i∈[k] pinRi

.
= attS(y)i).

Since k ≥ 1 and vi = pinRi for i ∈ [k], we include the formula for SOgra(y):
⇔ G |= SOgra(S)∧∀i∈[k]vi.(v1, . . . , vk)⇒ SOgra(R

Pin(R)
,
∧
i∈[k] vi

.
= attS(y)i)).

and by the definition of SOrule, we get
⇔ G |= SOgra(S) ∧ ∀i∈[k]vi.SOrule(x/R).
Since S has only a single hyperedge, x′(v1, . . . , vrank x′) is false for every x′ 6= x,
⇔ G |= SOgra(S,SOsys(R)).

Induction hypothesis. For some S′ ∈ GX with S ⇒R S′, assume
∃S′, q′ : S′ → G.S′ ⇒∗R Sσ ⇐⇒ G |= SOgra(S′) ∧ SOsys(R).

Induction step. Then
∃Sσ, q : Sσ → G.S ⇒∗R Sσ

28

⇔ ∃Sσ, q : Sσ → G.∃S′.S ⇒R S′ ⇒∗R Sσ

By Lemma 2, we can express S′ as a SO formula
⇔ ∃S′.G |= SOgra(S′) ∧∧x∈X

∨
x/R∈R ∀vi.SOrule(x/R)

⇔ ∃S′.G |= SOgra(S′)∧ SOsys(R)∧ S ⇒R S′ ⇔ G |= SOgra(S)∧ SOsys(R). �
We can now prove Theorem 2 for A-satisfiable HR∗ conditions: For every

HR∗ condition c and for all graphs G ∈ G, G |=A c ⇐⇒ G |= SO(c).

Proof (of Theorem 2). We proceed by induction over the structure of HR∗ con-
ditions. The proofs for conditions true, ¬c and

∧
i∈I ci are straightforward.

For conditions ∃(a, c), we use the Lemmata 2 and 3 to show that graph mor-
phisms and substitution can be simulated by our construction. For conditions
∃(P w C, c), Lemma 2 is used to show that the inclusion of Cσ in Pσ is simulated
by the constructed formula.
Base case. c = true. Then SO(c) = true⇒ G |=A c⇔ true⇔ SO(c) |= true.
Induction hypothesis. Assume that for HR∗ conditions ci, i ∈ J for an index set
J , G |=A ci ⇔ G |= SO(ci) holds.
Induction step. Let a = P ↪→ C.

1. c = ∃(a, c1). By Lemma 3, we have

G |=A ∃(a, c1) Def. HR∗

⇔ ∃σ, p : P ↪→ G, q : Cσ → G.q ◦ aσ = p ∧ q |=A,σ c1 Lemma 2
⇔ G |= SOgra(C−P) ∧ SOsys(R) ∧ SO(c1) Construction SO8

⇔ G |= SO(∃(a, c1)).

2. c = ∃(P w C, c1). Then we have

G |=A ∃(P w C, c1) Def. HR∗

⇔ ∃p : P → G, σ, b : Cσ → Pσ, q : Cσ → G.p ◦ b = q
∧q |=A,σ c1 Ind. hypothesis

⇔ ∃p : P → G, σ, b : Cσ → Pσ, q : Cσ → G.p ◦ b = q
∧∃Cσ → G ∧G |= SO(c1)

⇔ ∃p : P → G, σ, b : Cσ → Pσ, q : Cσ → G.p ◦ b = q
∧∃Cσ → G ∧G |= SO(c1)

⇔ ∃σ ∈ R, Pσ, Cσ, p : Pσ → G.P ⇒∗σ Pσ ∧ C ⇒∗σ Cσ
∧Pσ ⊇ Cσ ∧ C |=A,σ c1

⇔ ∃σ ∈ R, Pσ, Cσ, p : Pσ → G.P ⇒∗σ Pσ ∧ C ⇒∗σ Cσ
∧Pσ ⊇ Cσ ∧ SO(c1)

⇔ G |= SOgra(C, ∃XP , XC .
∧
x∈DP

(x ∈ XP)
∧∧y∈DC

(y ∈ XC) ∧XC ⊆ XP ∧ SO(c)) Constr. SOgra

⇔ G |= SOgra(C, ∃XP , XC .SOset(P,XP) ∧ SOset(C,XC)
∧XC ⊆ XP ∧ SO(c)) Constr. SO

⇔ G |= SO(∃(P w C, c1))

3. For c = ¬c1, SO(c) = ¬ SO(c1). By the induction hypothesis, we have
G |=A c⇔ G 6|=A c1 ⇔ G 6|= SO(c1)⇔ G |= SO(c).
For c =

∧
i∈J cj , SO(c) = SO(

∧
i∈J cj). Using the induction hypothesis, we

get: G |=A
∧
i∈J cj ⇔ G |= ∧i∈J SO(cj)⇔ G |= SO(

∧
i∈J cj).

29

�
It follows that every (A-satisfiable) HR∗ condition can be transformed into

an equivalent second-order formula. Since, by Lemma 1, every HR∗ condition
can be transformed into an A-satisfiable one with replacement, this is also true
for HR∗ conditions.

Example 9. We convert the HR∗ condition from Example 3 into an equivalent
SO formula.

SO

(〈
∃(•

1
•
2

X), •
1
•
2

X ::= •
1
•
2
| •

1
• •

2

X
〉)

≡ SOsys(•
1
•
2

X ::= •
1
•
2
| •

1
• •

2

X)

∧ SO(∃(•
1

•
2

X))

≡ ∃X.∀v1, v2.(X(v1, v2)⇒ SOgra(•
1
•
2
) ∨ SOgra(•

1
• •

2

X))

∧ SOgra(•
1

•
2

X)

≡ ∃X.∀v1, v2.(X(v1, v2)⇒ ∃e. inc(e, v1, v2) ∨ ∃v3, e. inc(e, v1, v3) ∧X(v3, v2))

∧ SOgra(•
1

•
2

X)

≡ ∃X.∀v1, v2.X(v1, v2)⇒ ∃e. inc(e, v1, v2) ∨ ∃v3, e. inc(e, v1, v3) ∧X(v3, v2)
∧∃v1, v2.X(v1, v2)

The resulting formula expresses “There is a relation X such that for every pair
v1, v2 in relation X, there is either an edge from v1 to v2 or an edge from v1
to some node v3, which is in turn in relation X with v2 (i.e. there is a path of
arbitrary length from v1 to v2); and the graph has two nodes v1, v2 in relation
X.”

6 Conclusion

In this paper, we established a lower and an upper bound on the expressiveness
of HR∗ conditions. The relation of HR∗ conditions to other formalisms is shown
in Figure 4: HR∗ conditions extend nested conditions and are situated between
node-counting monadic second-order logic and second-order logic.

Several questions regarding the expressiveness of HR∗ conditions remain
open, as indicated by question marks in Figure 4. It is unclear how HR∗ condi-
tions relate to counting monadic second-order formulas, which may count over
nodes and edges. Furthermore, the question remains open whether any second-
order formula can be expressed as a HR∗ condition. The author suspects that
this is not the case, as quantification over arbitrary relations seems to be more
powerful than the hyperedge replacement used in HR∗ conditions.

References

1. Baldan, P., Corradini, A., König, B., Lluch-Lafuente, A.: A temporal graph logic
for verification of graph transformation systems. In: WADT 2006. pp. 1–20 (2006)

30

FO logic

MSO logic

Node-CMSO logic

CMSO logic

SO logic

nested conditions

HR∗ conditions

[7]

[8]

?

this paper

?
?

this paper

Fig. 4. Comparison of the expressiveness of several types of logics and conditions.

2. Bruggink, H.S., König, B.: A logic on subobjects and recognizability. In: IFIP
Conference on Theoretical Computer Science. pp. 197–212 (2010)

3. Courcelle, B.: On the expression of graph properties in some fragments of monadic
second-order logic. In: Descriptive Complexity and Finite Models: Proceedings of
a DIMACS Workshop (1997)

4. van Dalen, D.: Logic and Structure. Springer-Verlag Berlin, 4th edn. (2004)
5. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph

Transformation. EATCS Monographs of Theoretical Computer Science, Springer
(2006)

6. Gaifman, H.: On local and non-local properties. In: Stern, J. (ed.) Proceedings of
the Herbrand Symposium: Logic Colloquium’81. pp. 105–135. North Holland Pub.
Co. (1982)

7. Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems
relative to nested conditions. Mathematical Structures in Computer Science 19,
245–296 (2009)

8. Habel, A., Radke, H.: Expressiveness of graph conditions with variables. Electronic
Communications of the EASST 30 (2010)

9. Pennemann, K.H.: Development of Correct Graph Transformation Systems. Ph.D.
thesis, Universität Oldenburg (2009)

10. Poskitt, C.M., Plump, D.: Hoare-style verification of graph programs. Fundamenta
Informaticae 118(1-2), 135–175 (2012)

11. Rensink, A.: Towards model checking graph grammars. In: Workshop on Auto-
mated Verification of Critical Systems (AVoCS). pp. 150–160 (2003)

31

A Graph Transformational View on
Reductions in NP

Marcus Ermler, Sabine Kuske, Melanie Luderer and Caroline von Totth

University of Bremen, Department of Computer Science
P.O.Box 33 04 40, 28334 Bremen, Germany

{maermler,kuske,melu,caro}@informatik.uni-bremen.de

Abstract. Many decision problems in the famous and challenging com-
plexity class NP are graph problems and can be adequately specified
by polynomial graph transformation units. In this paper, we propose to
model the reductions in NP by means of a special type of polynomial
graph transformation units, too. Moreover, we present some first ideas
how the semantic requirements of reductions including their correctness
can be proved in a systematic way.

1 Introduction

Many famous NP-complete problems involve graphs. Examples of this kind are
the problems of finding a clique, a Hamiltonian cycle, a vertex cover, an indepen-
dent set, etc. Whereas the complexity class NP as well as the notion of reductions
between NP problems are usually defined by means of polynomial Turing ma-
chines on the general level, explicit problems and reductions are described on
some higher level for easier reading and understanding.

Since the algorithms solving decision problems or modeling reductions are
often composed of graph transformation steps, polynomial graph transforma-
tion units [9, 8] serve as visual, rule-based and formal descriptions for these
algorithms. Consequently, graph transformation units may be helpful not only
for specifying and understanding decision problems and reductions but also for
obtaining correctness proofs in a systematic way. Graph transformation units
contain graph transformation rules for modeling the graph transformation steps
in an elegant, formal, visual and intuitive way. Moreover, the control conditions
of graph transformation units restrict the set of all derivations induced by the
rules to those which solve the problem. Finally, the initial and terminal graph
class expressions of graph transformation units allow to specify the input and
output types of the algorithms.

In [7], it has already been shown that polynomial graph transformation units
are a formal computational model for decision problems in NP. To underline
the usefulness of this result, we model in this paper the problems of finding a
clique, an independent set, a vertex cover and a Hamiltonian cycle as graph
transformation units. Moreover, we extend [7] by considering also reductions in
NP. A reduction from a graph transformation unit to a graph transformation

32

unit transforms the initial graphs of the first unit to the initial graphs of the
second unit. Polynomial graph transformation units with stepwise control serve
as a computational model for such reductions in NP if they are deadlock-free and
correct. The correctness can be split into forward and backward correctness. To
stress this, we present reduction units from the clique problem to the independent
set problem and - more sophisticated - from the vertex cover problem to the
Hamiltonian cycle problem.

Moreover, we make a first step towards a proof scheme for the correctness of
reductions. We show that forward correctness is obtained by induction on the
length of computations provided that there are certain auxiliary reductions com-
patible with the computation steps. We illustrate the principle for the presented
examples.

The aim of this paper is to show that graph transformation units provide a
uniform, systematic, and high-level framework for the specification of decision
problems as well as of reductions between them which is more intuitive than
but as formal as Turing machines. Moreover, the paper illustrates how the pre-
sented approach may serve as a foundation of a proof scheme for correctness of
reductions.

The paper is organized as follows. In Section 2, polynomial graph transfor-
mation units with stepwise control are presented. Section 3 shows how graph
transformation units can be used as a computational model for the decision
problems in NP. Section 4 proposes graph transformation units for modeling
reductions in NP. Section 5 deals with correctness of reductions. The paper ends
with the conclusion.

2 Polynomial Graph Transformation Units with Stepwise
Control

In this section, we briefly recall graph transformation units as far as they are
needed in the following sections. We emphasize especially the use of stepwise
control conditions in polynomial graph transformation units as they are essential
for our approach to reductions in NP. We assume that the reader is familiar with
graph transformation (see [12] for an overview).

In the following, we use edge-labeled directed graphs with multiple edges in
which the edge labels are taken from a finite alphabet A. The class of all such
graphs is denoted by G. A rule r = (L ⊇ K ⊆ R) consists of three graphs
L,K,R ∈ G such that K is a subgraph of L and R. The application of r to a
graph G yields a directly derived graph H and is performed according to the
double pushout approach with injective matches (cf. e.g. [1]). Roughly spoken,
an (injective) match of L in G (i.e. a subgraph of G isomorphic to L) is replaced
by (a copy of) R such that the part of the match which corresponds to K is
identified with the subgraph K of R. A rule with a negative application condition
is composed of a rule r = (L ⊇ K ⊆ R) and a graph N of which L is a subgraph.
Its application consists of applying r only if the corresponding match of L cannot
be extended to a match of N . By R we denote the class of rules consisting of

33

rules with a negative application condition. Negative application conditions are
studied in [5]. Please note that polynomial time is needed to find a match and to
construct a direct derivation if the rule set is fixed (which is the case throughout
this paper). Moreover, the difference of the size of the resulting graph and the
host graph is bounded by a constant (cf. [8]).

A graph class expression may be any syntactic entity X that specifies a class
of graphs SEM (X) ⊆ G. A typical example is a forbidden structure. Let F be
a set of graphs; then SEM (forbidden(F)) consists of all graphs G such that for
each F ∈ F there is no injective match of F in G. In the following the class of
graph class expressions is denoted by E .

A stepwise control condition directly guides the derivation process, i.e. it
provides for each derivation step the next permitted rule application steps. More
formally, a stepwise control condition C = (S, J, F, choice) consists of a finite set
of control states S, two subsets J, F ⊆ S of initial and final control states resp.
and a choice function choice with choice(G, s) ⊆ G × S for G ∈ G and s ∈ S.
We denote the class of stepwise control conditions by C.

Stepwise control conditions can be often defined w.r.t. control conditions. A
control condition is any expression that specifies a binary relation on graphs.
Examples of control conditions are the basic control conditions r! and try(r)
where r is a rule. The expression r! means to apply r as long as possible. The
expression try(r) means that if r is applicable to the current graph apply r once.
In the following, Try&Alap denotes the class in which each control condition is
either a basic control condition or it is the sequential composition of basic control
conditions, i.e., it has the form c1; · · · ; cn (n ≥ 1) where for i = 1, . . . , n ci is a
basic control condition.

For each control condition c ∈ Try&Alap the corresponding stepwise control
condition stw(c) is equal to (Sc, Jc, F c, choicec) where Sc is defined recursively
as Sc = {b; lambda, lambda} if c = b and Sc = {c; lambda} ∪ Sd if c = b; d
for some basic control condition b and d ∈ Try&Alap. (Hence, every state is
either equal to lambda or has the form b; s′ where s′ is a state and b is a basic
control condition.) Moreover, Jc = {c; lambda} and F c = {lambda}. For each
G ∈ G, each s ∈ Sc and each rule r occurring in c the choice function is given
by choicec(G, lambda) = ∅ and

choicec(G, r!; s) =

{
{(G′, r!; s) | G =⇒

r
G′} if ∃G′ ∈ G : G=⇒

r
G′

{(G, s)} otherwise

choicec(G, try(r); s) =

{
{(G′, s) | G =⇒

r
G′} if ∃G′ ∈ G : G=⇒

r
G′

{(G, s)} otherwise

A configuration of a stepwise control condition C = (S, J, F, choice) is a pair
(G, s) with G ∈ G and s ∈ S. (G, s) ` (G′, s′) is a computational step if (G′, s′) ∈
choice(G, s). A computation is a sequence of computational steps (G0, s0) `
(G1, s1) ` · · · ` (Gn, sn) (also denoted by (G0, s0) `n (Gn, sn)). Obviously, each
computation induces an underlying derivation. The semantics SEM (C) is given
by the set of derivations induced by all computations (G0, s0) `n (Gn, sn) with
s0 ∈ J and sn ∈ F .

34

A graph transformation unit is a system gtu = (I, P, C, T), where I, T ∈ E
are graph class expressions to specify the initial and the terminal graphs respec-
tively, P ⊆ R is a finite set of rules, and C ∈ C is a stepwise control condition. In
examples of graph transformation units, each stepwise control condition stw(c)
is abbreviated by c. Every graph transformation unit gtu specifies a binary re-
lation SEM (gtu) ⊆ SEM (I) × SEM (T) that contains a pair (G,H) of graphs

if and only if there is a derivation G
∗

=⇒
P
H ∈ SEM (C). For each G ∈ SEM (I)

gtu(G) denotes the set {H ∈ G | (G,H) ∈ SEM (gtu)}.
Let gtu = (I, P, C, T) be a transformation unit with a stepwise control con-

dition C = (S, J, F, choice). A configuration (G, s) is initial if G ∈ SEM (I) and
s ∈ J. It is terminal if G ∈ SEM (T) and s ∈ F. A permitted computation is a
sequence of computational steps (G0, s0) ` (G1, s1) ` · · · ` (Gn, sn) if (G0, s0)
is an initial configuration. The induced derivation of a permitted computation

is called permitted derivation. Note that the 0-derivation G
0

=⇒ G is always
permitted if G ∈ SEM (I). A permitted computation is successful if (Gn, sn) is
a terminal configuration. The induced derivation of a successful computation is
called successful derivation.

A gtu is polynomial if the following holds: (1) there is a polynomial p such

that for each initial graph G ∈ SEM (I) and each permitted derivation G
n

=⇒G′,
n ≤ p(size(G)), where size(G) is the sum of the number of nodes and the num-
ber of edges of G. (2) the membership problems of SEM (I) and SEM (T) are
polynomial. (3) to compute a next configuration via the choice function takes
polynomial time. Please note that for all graph class expressions and all step-
wise control conditions used in this paper, the second and the third condition
are satisfied (each next configuration is picked up nondeterministically based on
a fixed rule set).

3 Decision Problems of NP as Graph Transformation
Units

In the following, it is recalled how polynomial graph transformation units can
be used as a computation model for decision problems in the complexity class
NP (cf. [7]).

A decision problem is a mapping D : Σ∗ → BOOL, where Σ is some finite
alphabet. D is in the complexity class NP if there exists a nondeterministic
Turing machine TM and a polynomial p such that for each input w ∈ Σ∗ the
following holds. (1) there is a computation of TM starting in the initial state
with input w and ending in an accepting state if and only if D(w) = true and
(2) no computation of TM starting with input w is longer than p(|w|) (cf., e.g.,
[6]).

Very often, inputs of decision problems are not strings but they are com-
posed of different data types such as graphs and natural numbers. Describing
these instances as words in Σ∗ would be very hard to read for human beings.
Hence, in the literature, they are usually defined directly. For the same reason,

35

the algorithms solving the decision problems are generally not given as Turing
machines but as some higher level algorithmic description, and — based on the
Church-Turing thesis — it is assumed that they can be computed by some Turing
machine.

Whenever inputs of decision problems are graphs, polynomial graph transfor-
mation units serve as an intuitive computational model for NP-problems. More
explicitly, a polynomial graph transformation unit gtu = (I, P, C, T) solves a
graph transformational decision problem D : SEM (I)→ BOOL in the following

way. Whenever there is a successful derivation G
∗

=⇒G′ in gtu, the result of
the decision problem applied to G is true. Otherwise, it is false. Let NPGT de-
note the class of all graph transformational decision problems solvable by some
polynomial graph transformation unit. The following statement is shown in [7].

Observation 1 NPGT = NP.

Example. To illustrate how decision problems can be modeled as graph transfor-
mation units, we present the decision problem clique of NP as a graph transfor-
mation unit. The decision problem clique has as input an undirected unlabeled
graph G and a natural number k. The result of clique(G, k) returns true if G
contains a clique of size k, i.e., a complete subgraph with k nodes. Otherwise it
returns false. For technical simplicity we assume that k is less than or equal to
the number of nodes in G.

The problem clique can be modeled by the transformation unit CLIQUE in
Fig. 1. Each initial graph of CLIQUE is the disjoint union of two graphs. The
first is an undirected simple unlabeled graph G in which each node is equipped
with a (directed) loop. (An undirected edge can be represented by two parallel
opposite edges; an unlabeled edge is labeled with a special symbol not shown
in drawings.) The second one is the graph gr(k) for some k ∈ N consisting
of a single node with k succ-loops (i.e., k loops each labeled with succ). It is
worth noting that the unary encoding of k is possible because clique is strongly
NP-complete.

The rule select is applied at first as long as possible selecting in each applica-
tion a node of G while removing a succ-loop. Afterwards the rule test(CLIQUE)
is applied once if possible. Its application inserts a bad -edge if the selected nodes
do not form a clique. The resulting graph is accepted if it does not contain a
bad -edge.

Each permitted derivation consists of at most k+ 1 rule applications. Hence,
according to the considerations of Section 2 concerning polynomial graph trans-
formation units, we get that CLIQUE is polynomial.

The semantic relation SEM (CLIQUE) consists of all pairs (G + gr(k), H +
gr(0)) such that G is simple, unlabeled and looped, and H is obtained from G
by inserting an s-loop at each node of a k-clique. Hence, (G+gr(k), H+gr(0)) ∈
SEM (CLIQUE) if clique(G, k) = true. Otherwise, there is no Ĥ ∈ G such that
(G+ gr(k), Ĥ) ∈ SEM (CLIQUE). This means that CLIQUE is correct.

36

CLIQUE
initial: simple&unlabeled&looped + gr(N)
rules:

select : 1 2

succ

⊇ 1 2 ⊆ 1

s

2

test(CLIQUE): 1

s

2

s

⊇

1

s

2

s

⊇ 1

s

2

s

⊆ 1

s

2

s
bad

control: select ! ; try(test(CLIQUE))

terminal: forbidden(
bad

)

Fig. 1. A graph transformation unit for clique

4 Reductions in NP as Graph Transformation Units

In this section, we show how reductions in NP can be modeled by polynomial
graph transformation units in a systematic way.

For i = 1, 2, let Di : Σ∗ → BOOL be decision problems. A (polynomial)
reduction from D1 to D2 is a function translate : Σ∗ → Σ∗ such that (1) for
each w ∈ Σ∗, D1(w) = D2(translate(w)) and (2) translate can be computed by
a polynomial Turing machine. Strictly speaking, translate does not need to be
a function from Σ∗ → Σ∗. It suffices to require that it associates a nonempty
set with each string w provided that D1(w) = D2(w′) for each w′ in the set
associated with w. Hence, the polynomial Turing machine does not need to
be deterministic. The set of all reductions is denoted by RED. As mentioned
before, Turing machines are hard to read and that is why reductions are usually
described on a higher level.

Whenever reductions involve graphs, polynomial graph transformation units
are a natural means to specify them. More precisely, a polynomial graph transfor-
mation unit red = (I1, P, C, I2) models a reduction from D1 : SEM (I1)→ BOOL
to D2 : SEM (I2)→ BOOL if red is deadlock-free and correct. Deadlock-freeness
means that every permitted derivation that is not prolongable is successful.
Correctness means that D1(G) = D2(H) for each G ∈ SEM (I1) and each
H ∈ red(G). In this case, red is called a reduction unit. Please note that
since graph transformation is highly nondeterministic reduction units are not
required to be functional, i.e., for every G ∈ SEM (I1), there may be more
than one H in red(G). If D1 and D2 are given as graph transformation units
gtu1 = (I1, P1, C1, T1) and gtu2 = (I2, P2, C2, T2), then the correctness of red is
implied by its forward and backward correctness defined as follows.

1. Forward correctness: If there is a successful derivation from G ∈ SEM (I1) in
gtu1, then there is a successful derivation from H in gtu2, for all H ∈ red(G).

37

2. Backward correctness: If there is a successful derivation from H in gtu2,
where H ∈ red(G) for some G ∈ SEM (I1), then there is a successful deriva-
tion from G in gtu1.

Let REDGT be the set of all reductions given as graph transformation units.
Then it can be shown that REDGT corresponds to RED. This means that for
every reduction translate : Σ∗ → Σ∗ from D to D′ in RED, there is a reduction
unit red from DG to D′G in REDGT where DG and D′G are the decision prob-
lems in NPGT corresponding to D and D′, respectively. Conversely, let red be
a reduction unit from a graph transformational decision problem D to a graph
transformational decision problem D′. Then there is a reduction translate from
DStr to D′Str in RED where DStr and D′Str are the decision problems in NP
corresponding to D and D′, respectively. The proof is very similar to the proof
of the correspondence of NPGT and NP (cf. [7]) and hence omitted.

Observation 2 REDGT = RED.

The first point of the following proposition presents a sufficient condition
for deadlock-freeness. The second point relates deadlock-freeness to the example
class of stepwise control conditions presented in Section 2. It makes use of the fact
that every permitted computation that cannot be prolonged ends in a final state
(which is not true in general). Hence to show deadlock-freeness, it is sufficient
to show that all those computations end in a terminal graph.

Proposition 1. Let gtu = (I, P, C, T) be a polynomial graph transformation
unit with C = (S, J, F, choice).

1. Then gtu is deadlock-free, if for each permitted computation (G0, s0) ` · · · `
(Gn, sn) of gtu with (Gn, sn) /∈ SEM (T)× F , choice(Gn, sn) 6= ∅.

2. If C = stw(c) for some c ∈ Try&Alap, then gtu is deadlock-free if for each
permitted computation (G0, s0) ` · · · ` (Gn, sn) of gtu sn = lambda implies
Gn ∈ SEM (T).

A deadlock-free graph transformation unit is functional if for every initial
graph G every successful derivation from G yields the same terminal graph (up
to isomorphism). The next proposition relates the functionality to control con-
ditions. It states that if the control condition of a deadlock-free unit is based on
expressions of the form r! only and the rule applications of each r are locally
confluent, then the unit is functional. Clearly, in forward correctness proofs of
functional reduction units only one derivation has to be checked for each initial
graph of the first unit.

Proposition 2. Let gtu = (I, P, C, T) be a deadlock-free polynomial graph
transformation unit such that C = stw(c) where c is of the form r1!; · · · ; rn!
with {r1, . . . , rn} ⊆ P . Then gtu is functional if for all G,G1, G2 ∈ G where G1

and G2 are not isomorphic: G=⇒
r
G1 and G=⇒

r
G2 implies that there is a graph

G3 ∈ G such that G1 =⇒
r
G3 and G2 =⇒

r
G3.

38

4.1 From Cliques to Independent Sets

The graph transformation unit CLIQUE -to-INDEP in Fig. 2 models a reduction
from clique to indep. The decision problem indep gets as inputs a graph G and
a natural number k. It returns true if and only if G has an independent set of
size k, i.e., a set M of k nodes such that no two nodes of M are adjacent in G.
The decision problem indep can be modeled by the graph transformation unit

INDEP = (ICLIQUE , {select , test(INDEP)}, select !; try(test(INDEP)), TCLIQUE)

where test(INDEP) is the rule 1

s

2

s

⊇ 1

s

2

s

⊆ 1

s

2

s
bad

.
The rule complement of the unit CLIQUE -to-INDEP inserts a d-edge be-

tween all pairs of distinct nodes provided that they are not connected via an
undirected edge in the initial graph. The rule remove deletes all original undi-
rected edges and, finally, the rule relabel turns each d-edge into an unlabeled
edge.

CLIQUE -to-INDEP
initial: simple&unlabeled&looped + gr(N)
rules:

complement : 1 2 ⊇ 1 2 ⊆ 1 2
d

⊇

1 2

remove: 1 2 ⊇ 1 2 ⊆ 1 2

relabel : 1 2
d

⊇ 1 2 ⊆ 1 2

control: complement ! ; remove! ; relabel !
terminal: simple&unlabeled&looped + gr(N)

Fig. 2. A graph transformation unit for the reduction from clique to indep

Since every derivation that cannot be prolonged reaches a terminal graph and
since the rule applications of each rule are locally confluent, we get by Proposi-
tions 1 and 2 that CLIQUE -to-INDEP is functional. The following observation
concerns the successful derivations of CLIQUE -to-INDEP and can be shown
by induction. It states that CLIQUE -to-INDEP generates for each initial graph
G+ gr(k) the graph H + gr(k) where H is the complement graph of G.

Observation 3 LetG ∈ G. ThenG
∗

=⇒H is a successful derivation of CLIQUE -
to-INDEP if and only if H is obtained from G by inserting an unlabeled undi-
rected edge between each pair of nodes that is not connected via an unlabeled
undirected edge and by deleting all original unlabeled undirected edges.

In every successful derivation, each of the three rules is applied at most
n2 times where n is the number of nodes of the initial graph. Hence, taking

39

into account the considerations of Section 2 we get that CLIQUE -to-INDEP is
polynomial.

4.2 From Vertex Covers to Hamiltonian Cycles

In the following, a more sophisticated example of a reduction is presented.
Let VC be the graph transformation unit

(ICLIQUE , {select , test(VC)}, select !; try(test(VC)), TCLIQUE)

where test(VC) is the rule 1 2 ⊇ 1 2 ⊆ 1 2
bad

. This
unit VC is the graph transformational version of the decision problem vc with a
graph G and a natural number k as inputs. It returns true if and only if G has
a vertex cover of size k, i.e., a set of k nodes so that every edge is incident to at
least one of these nodes.

The graph transformation unit HC in Fig. 3 models the decision problem hc
the input of which is a graph G. It returns true if and only if G has a Hamiltonian
cycle, i.e., a cycle that visits every node exactly once.

HC
initial: simple&unlabeled&looped
rules:

init : 1 ⊇ 1 ⊆ 1

start

start : 1

start

2 ⊇ 1

start

2 ⊆ 1

start

2

run

p

run: 1

run

2 ⊇ 1

run

2 ⊆ 1

run

2

run

p

stop: 1

run

2

start

⊇ 1

run

2 ⊆ 1

run

2p

run

control: try(init); try(start); run!; try(stop)

terminal: forbidden(, start)

Fig. 3. A graph transformation unit for Hamiltonian cycles

The following unit VC -to-HC models a reduction from VC to HC . It is
based on the construction presented in [4].

VC -to-HC
initial: simple&unlabeled&looped + gr(N)
rules: {r1, . . . , r11}
control: r1! ; try(r2) ; r3!; · · · ; r8!; r9(n)!; r9(b)!; r10!r11!
terminal: simple&unlabeled&looped

40

The rules of the unit VC -to-HC are depicted in Fig. 4, 5, and 6.

r1: 1

succ

succ

⊇ 1 ⊆ 1

succ n

r2: 1

succ

⊇ ∅ ⊆

n

r3:

1

2

⊇
2

1 ⊆
2

1

b b b b b

b b b b b

c

c

b

b

6

6

r4: 1 2
c ⊇ 1 2 ⊆ 1

ok

2
a

Fig. 4. The rules r1, . . . , r4 of the unit VC -to-HC

According to the control condition the first rule is applied as long as possible
before trying to apply the second rule once. This converts the graph gr(k) into
k n-nodes. The third rule generates a {u, v}-edge-ladder, two 6-edges and two
c-edges for each subset {u, v} of distinct nodes that are adjacent in the initial
graph. After applying it as long as possible each initial node v is connected by a
c-edge to l different ladders where l is the number of undirected edges incident to
v. The target of a c-edge originating from v is called a v-entry and the target of
the 6-edge starting from a v-entry is a v-exit. (The 6-edges are for remembering
in further rules which exits belong to which entries.) A ladder with a v-entry is
also called a v-ladder. The fourth rule, applied as long as possible, chooses one
c-edge for each (non-isolated) initial node v replacing it by an a-edge; hence,
this rule selects one {u, v}-ladder for each initial node v. The rule r5 connects
the v-entry of each selected ladder to each n-node. The rule r6 selects for each
initial node v a not yet selected v-ladder and connects the v-exit of the previously
selected ladder to the v-entry of this ladder. This is repeated as long as possible
so that finally all v-ladders are selected.

Rule r7 connects for each initial node v the v-exit of the last selected ladder
to each n-node. The rule r8 removes all initial nodes together with the attached
loops and the incident a-edges; with the rule r9 every n-loop and every b-loop is
turned into an unlabeled loop; r10 deletes all 6-edges and r11 all isolated initial
nodes.

The next observation concerns the successful derivations of VC -to-HC .

Observation 4 Let (G + gr(k)) ∈ SEM (IVC) and let H ∈ G. Then H ∈
VC -to-HC (G+ gr(k)) if and only if H consists of the following components:

41

r5: 2 1
a

3n

⊇ 2 1
a

3n

⊇ 2 1
a

3n

⊆ 1 2
a

3n

r6 : 3

4

c
1

a

2

6

⊇ 3

4

1

2

6

⊆ 3

4

a
1

2

6

Fig. 5. The rules r5 and r6 of the unit VC -to-HC

r7: 3

4

n

1
a

2

6

⊇ 3

4

n

1
a

2

6

⊇ 3

4

n

1
a

2

6

⊆ 3

4

n

1
a

2

6

r8: 1

ok

2
a ⊇ 2 ⊆ 2 r9(x): 1

x

⊇ 1 ⊆ 1

r10: 1 2
6 ⊇ 1 2 ⊆ 1 2 r11: 1 ⊇ ∅ ⊆ ∅

Fig. 6. The rules r7, . . . , r11 of the unit VC -to-HC

– A {u, v}-ladder for each set {u, v} of distinct adjacent nodes in G,
– k nodes, say 1, . . . , k (not being part of a ladder),
– for each v ∈ VG there is some ordering lv1 , . . . , l

v
m(v) of the set of v-ladders

such that for j = 1, . . . ,m(v) − 1 the v-exit of lvj is adjacent to the v-entry
of lvj+1 and every node in [k] is adjacent to the v-entry of lv1 as well as to the

v-exit of lvm(v).
1

The nodes 1, . . . , k will also be called clip nodes.
Since every permitted derivation that cannot be prolonged ends in a terminal

graph we get by Proposition 1 that VC -to-HC is deadlock-free. By Observa-
tion 4, it is not functional. Moreover, since each successful derivation consists
of a polynomial number of steps, we get together with the considerations in
Section 2 that VC -to-HC is polynomial.

5 Correctness

The following proposition is useful for proving forward correctness of reductions
and provides a first step towards a proof scheme for correctness of reductions.
Roughly spoken, it states that the existence of a set Aux of deadlock-free graph
transformation units leads to the forward correctness of a reduction from gtu1

1 [k] denotes the set {1, . . . , k}.

42

to gtu2 if the units in Aux satisfy certain compatibility conditions that may be
seen as stepwise correctness.

Proposition 3. For i = 1, 2, let gtui = (Ii, Pi, Ci, Ti) be polynomial graph
transformation units. Let red = (I1, P, C, I2) be a deadlock-free polynomial
graph transformation unit. Then red is a forward correct unit from gtu1 to
gtu2, if there is a set Aux of deadlock-free polynomial graph transformation
units such that for each successful derivation G0 =⇒· · ·=⇒Gn in gtu1 and each
H0 ∈ red(G0) there are units red1, . . . , redn ∈ Aux and graphs H1, . . . ,Hn ∈ G
such that the following hold:

1. For i = 1, . . . , n, the graph Hi is in red i(Gi), and there is a derivation

deri = (Hi−1
∗

=⇒Hi) such that the sequential composition der1 · · · dern is
permitted in gtu2.

2. Hn ∈ SEM (T2).

Remarks.

1. This proposition allows to prove forward correctness by induction on the
length of the permitted derivations that can be prolonged to successful
derivations. To this aim, stepwise control is essential.

2. Let r̂ed be a deadlock-free polynomial unit from gtu2 to gtu1 such that for
each G ∈ SEM (I1) and each H ∈ red(G) with a successful derivation in gtu2,

G ∈ r̂ed(H). Then forward correctness of r̂ed implies backward correctness
of red .

5.1 Correctness of CLIQUE-to-INDEP

Let der = (G0
n

=⇒Gn) be a successful derivation of CLIQUE . Then in every
derivation step the rule select is applied. Let H0 ∈ CLIQUE -to-INDEP(G0).
Then due to the functionality of CLIQUE -to-INDEP , H0 is the unique graph in
CLIQUE -to-INDEP(G0). Let red′ be the unique auxiliary unit defined as

red′ = (all, PCLIQUE-to-INDEP , CCLIQUE-to-INDEP , all),

where SEM (all) = G. Please note that red′ is used for transforming the graphs
G1, . . . , Gn which are not in SEM (ICLIQUE). Hence, the initial graph class ex-
pression of red′ is more general than that of CLIQUE . For similar reasons the
terminal expression of red′ is more general than the initial expression of INDEP .
By Propositions 1 and 2, red ′ is functional. Moreover, for i = 1, . . . , n, red(Gi)
consists of the complement of the underlying simple graph of Gi plus the loops
of Gi. We assume without loss of generality that the node set of the graph in
red ′(Gi) is equal to VGi

.

If n = 0 then CLIQUE -to-INDEP(Gn) = {H0} and H0
∗

=⇒H0 is permitted

in INDEP . Now assume that for some n ∈ N, H0
∗

=⇒
select

Hn is a derivation in

INDEP where Hn ∈ red ′(Gn) if n > 0 and Hn ∈ CLIQUE -to-INDEP(Gn) if

43

n = 0. Let Gn =⇒
select

Gn+1. Then Gn contains a node v, an unlabeled loop of

which is replaced by an s-loop and a succ-loop which is deleted. Then v has
also an unlabeled loop in Hn and the succ-loop is also present in Hn. Hence
there is a derivation step Hn =⇒

select
Hn+1 in which the rule select is applied to v

and the succ-loop. Since select only affects loops and red ′ does not affect loops,
Hn+1 ∈ red ′(Gn+1). Since H0

∗
=⇒
select

Hn+1 is permitted, Point 1 of Proposition 3

is satisfied.
If Gn ∈ SEM (TCLIQUE), then test(INDEP)) is not applicable to Hn because

otherwise, there would be an edge between s-nodes in Hn which is not present
in Gn. This means that test(CLIQUE) would be applicable to Gn, i.e., Gn /∈
SEM (TCLIQUE) which is a contradiction. Hence, Hn ∈ SEM (TINDEP), i.e., the
second condition of the proposition is also satisfied.

Hence, CLIQUE -to-INDEP is forward correct. Since CLIQUE -to-INDEP
models a bijective function, it is also backward correct. This leads to the following
observation.

Observation 5 The unit CLIQUE -to-INDEP is correct.

5.2 Forward Correctness of VC -to-HC

LetG0 = (G′0+gr(k)) ∈ SEM (IVC) and letG0
n

=⇒
select

Gn. LetH0 ∈ VC -to-HC (G0)

and for v ∈ VG′
0

let lv1 , . . . , l
v
m(v) be the ordering of the v-ladders in H0 and let

c1, . . . , cn be clip nodes (cf. Observation 4).2 Then for each ordering v1, . . . , vn
of the s-nodes in Gn the sequence (c1, l

v1
1 , . . . , l

v1

m(v1)
, . . . , cn, l

vn
1 , . . . , lvnm(vn)

) in-

duces a set Pathsn consisting of all paths in H0 that visit nodes c1, . . . , cn in
this order so that after each ci the ladders lvi1 , . . . , l

vi
m(vi)

are visited in this order.

In more detail, for j = 1, . . . ,m(vi) the ladder lvij is passed straight from its
vi-entry to its vi-exit if the other entry of the ladder (i.e., the entry not equal
to the vi-entry) is an s-node; otherwise it is passed straight or zigzag from its
vi-entry to its vi-exit. The ladders depicted in Fig. 7 illustrate the courses of the
straight and zigzag paths. The top nodes of the ladders represent their entries
and the bottom nodes their exits.

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

10

11

12

4

5

6

7

8

9

4

5

6

7

8

9

1

2

3

10

11

12

Fig. 7. Straight and zigzag paths through ladders

2 Since n ≤ k these clip nodes exist.

44

We can construct a polynomial deadlock-free graph transformation unit red
such that for each graph G derivable from some G0 ∈ SEM (IVC) by successive
applications of the rule select , red(G) consists of all graphs H which can be
obtained from some H0 ∈ VC -to-HC (G0) by highlighting one of the described
paths in such a way that all edges on the path are labeled with p the first clip node
has a start-loop and all other nodes on the path have a run-loop. For reasons of
space limitations red is not presented here; but it is worth noting that it is quite
similar to the unit VC -to-HC although needing more complicated control con-
ditions. By induction on n it can be shown that for every H0 ∈ VC -to-HC (G0)

there is a derivation H0
∗

=⇒Hn with application sequence init start runn−1 and
Hn ∈ red(Gn) if n > 0. If n = 0 the application sequence is equal to λ.

Moreover, if Gn is a terminal graph, then test(VC) is not applicable to Gn

i.e., the path in Hn contains all ladders and all clip nodes of H0 (remember that
k cannot be larger than the number of nodes in G′0). Hence the application of
stop to the last and the first node of the path yields a terminal graph of HC .

Altogether we get that VC -to-HC satisfies the conditions for the forward
correctness and hence the following observation is holds.

Observation 6 The unit VC -to-HC is forward correct.

6 Conclusion

In this paper, we have shown how reductions in NP can be modeled by graph
transformation units in a visual and formal way. In particular, we have presented
a first step towards a proof scheme for the correctness of reduction units. It
turned out that the presented approach is suitable to specify and prove the
(forward) correctness of two well-known reductions where the latter is rather
complex.

In the future, we want to undertake further steps in the following directions.
(1) The presented proof scheme for forward correctness is based on the correct-
ness of a set of auxiliary units which in turn can be shown by induction. Hence,
an interesting question is how the induction proof of the forward correctness can
be interwoven with the induction proofs of the auxiliary units in a systematic
way. (2) The first of our two reduction examples is backward correct because
the reduction can be done the other way round. However, the proof of backward
correctness should be integrated in the presented proof scheme in a systematic
way. (cf. also [2]). (3) Since reductions are a special kind of model transforma-
tions we would like to investigate how the presented ideas can be used to prove
correctness of model transformations, in general. To this aim, the presented ideas
should be related to other approaches to correctness proofs of model transforma-
tions based of graph transformations. In particular, we will compare our results
with those obtained in the field of model transformations using triple grammars.
(4) In addition to the considered class of stepwise control conditions based on
try and as-long-as-possible, we want to find out whether more general control
conditions are suitable for our purposes (see, e.g., [3, 10, 11]).

45

Acknowledgment. We are grateful to Hans-Jörg Kreowski and to the anonymous
reviewers for their helpful comments.

References

1. Corradini, A., Ehrig, H., Heckel, R., Löwe, M., Montanari, U., Rossi, F.: Algebraic
approaches to graph transformation part I: Basic concepts and double pushout
approach. In: Rozenberg [12], pp. 163–245

2. Ehrig, H., Ermel, C., Hermann, F., Prange, U.: On-the-fly construction, correct-
ness and completeness of model transformations based on triple graph grammars.
In: Schürr, A., Selic, B. (eds.) 12th International Conference on Model Driven
Engineering Languages and Systems(MoDELS 2009). Lecture Notes in Computer
Science, vol. 5795, pp. 241–255 (2009)

3. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story diagrams: A new graph
rewrite language based on the unified modeling language and java. In: Ehrig, H.,
Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) Proc. 6th International Workshop
on Theory and Application of Graph Transformations (TAGT’98), Selected Papers.
Lecture Notes in Computer Science, vol. 1764, pp. 296–309. Springer (2000)

4. Garey, M. R., Johnson, D. S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman (1979)

5. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application
conditions. Fundamenta Informaticae 26(3,4), 287–313 (1996)

6. Hopcroft, J. E., Motwani, R., Ullman, J. D.: Introduction to automata theory,
languages, and computation. Pearson/Addison Wesley (2007)

7. Kreowski, H.-J., Kuske, S.: Graph multiset transformation – a new framework for
massively parallel computation inspired by DNA computing. Natural Computing
10(2), 961–986 (2011)

8. Kreowski, H.-J., Kuske, S.: Polynomial graph transformability. Theoretical Com-
puter Science 429, 193–201 (2012)

9. Kreowski, H.-J., Kuske, S., Rozenberg, G.: Graph transformation units – an
overview. In: Degano, P., Nicola, R. D., Meseguer, J. (eds.) Concurrency, Graphs
and Models, Lecture Notes in Computer Science, vol. 5065, pp. 57–75. Springer
(2008)

10. Kuske, S.: More about control conditions for transformation units. In: Ehrig, H.,
Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) Proc. 6th International Workshop
on Theory and Application of Graph Transformations (TAGT’98), Selected Papers.
Lecture Notes in Computer Science, vol. 1764, pp. 323–337 (2000)

11. Plump, D.: The graph programming language GP. In: Proc. Algebraic Informatics,
Third International Conference (CAI 2009). Lecture Notes in Computer Science,
vol. 5725, pp. 99–122. Springer-Verlag (2009)

12. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformation, Vol. 1: Foundations. World Scientific, Singapore (1997)

46

Co-Transformation of Type and Instance Graphs

Supporting Merging of Types with Retyping ⋆

Florian Mantz1, Yngve Lamo1, Gabriele Taentzer1,2

1 Bergen University College, Norway
{fma,yla}@hib.no

2 Philipps-Universität Marburg, Germany
{taentzer}@informatik.uni-marburg.de

Abstract. Algebraic graph transformation is a well known rule-based
approach to manipulate graphs that can be applied in many contexts. In
this paper we use it in the context of model-driven engineering (MDE).
Graph transformation rules usually only describing changes of one graph,
however there are use cases such as model co-evolution where not only a
single graph should be manipulated but related ones. The co-transformat-
ion of type graphs together with their instance graphs has shown to be a
promising approach to formalize model and meta-model co-evolution. In
this paper, we extend our earlier work on co-evolution by allowing trans-
formation rules that have less restrictions so that graph manipulations
such as merging and retyping of graph elements become possible.

1 Introduction

Model-driven engineering (MDE) is a software engineering discipline that uses
models as the primary artifacts throughout software development processes and
adopt model transformation both for their optimization as well as for model
and code generation. Models in MDE describe application-specific system de-
signs which are automatically translated into code. A commonly used technique
to define modeling languages is meta-modeling. In contrast to traditional soft-
ware development where programming languages rarely change, domain-specific
modeling languages, and therefore meta-models, often change frequently: model-
ing language elements may be, e.g., renamed, extended by additional attributes,
merged or refined by a hierarchy of sub-elements. The evolution of a meta-model
requires the consistent migration of its models (See Fig. 1) which is a consider-
able research challenge in MDE [22].

Previous work e.g. [20,10,8] has mainly focused on the development of usable
tools to define and execute model migrations. The relation between meta-model
changes and model migrations has not been studied much on a formal level. In
our work, we focus on a formal setting of meta-model and model co-evolution to
study their relations and introduce correctness criteria of co-evolutions. Models
are specified as graphs while model relations are defined by graph morphisms.

⋆ This work was partially funded by NFR project 194521 (FORMGRID)

47

✄✂ �✁Meta-model
evolution //

✄✂ �✁Meta-model′

✄✂ �✁Model

conforms to

OO

migration +3_______

✄✂ �✁Model′

conforms to

OO

��

Fig. 1: Meta-model evolution and model migration

Especially the type conformance of models to their meta-models are specified
by graph morphisms. Manipulations of these graphs are described by graph
transformation [6] and category theoretical constructs [2]. In particular the pro-
posed approach is based on the co-span double pushout [7] approach which is a
variant of the double pushout (DPO) approach where transformation rules are
co-spans. Equivalence to the “traditional” DPO approach has been shown in
[7]. We prefer this alternative to the “traditional” DPO approach because we
consider this approach more practical since migrations can be easier synchro-
nized over an joint-type graph instead of a difference type graph [23]). The aim
is to understand the co-evolution problem better so that future tool support
can profit from this work. In [23] we proposed a framework that relates co-span
DPO transformations [7] on type graphs and their instance graphs that can be
applied in several categories of graphs. The framework clarifies the conditions
model migrations need to satisfy as well as explain how the fully determined part
of migration transformations such as deleting instances of deleted types can be
derived. Variants of instance graph migrations are still possible and can be speci-
fied choosing a proper migration strategy. While our earlier work only considered
injective rules with injective matching, we show in this paper that these condi-
tions can be relaxed so that one morphism of the rule can be non-injective. In
contrast to [23] it is now possible to merge elements in graphs and type graphs
and retype instance nodes and edges accordingly. This is a quite useful feature
when it comes to model co-evolution since the context of merged elements is
preserved. To motivate the approach we consider a running example using the
extended theory. Note, in the following we call a co-span transformation on the
type graph “evolution”, while co-span transformations on instance graphs are
considered to be “migrations”. An “evolution” transformation together with its
related “migration” transformation are considered as “co-transformation”. The
following results can be summarized as:

– We revise the definition of co-span transformation so that we do not require
that the right morphism of the rule has to be injective. Then we show that
for a given type graph evolution a graph migration exists which is well-typed
by the evolution under this relaxed condition.

– We also give conditions that ensure the uniqueness of the typing relation
between the type graph evolution and the graph migration.

48

2 Merging Metamodel Elements

In the following we illustrate an application of the proposed co-transformation
framework in the context of meta-model evolution with model co-adaptation by
a running example. The example is given in the category of attributed, typed
graphs with inheritance AIGraph as introduced in [9]. First we explain an evo-
lution step using injective rules before we revise the same step by using non-
injective rules that merge types. In addition the example illustrates how to use
co-span transformations and co-transformations.

Figure 2a shows the meta-model of SWAL3, a simple domain-specific modeling
language for development of interconnected web pages. The meta-model mainly
distinguishes between different kinds of web pages which are connected by hyper
references. There are two types of web pages, static and dynamic ones. While
instances of static pages result in plain HTML pages after code generation i.e. in
pages that contain HTML tags only, instances of dynamic pages result in Java
Server Pages (JSP). Note that static pages may contain static HTML forms.
In addition, the meta-model defines two special types of dynamic pages, both
referring to data entities being further specified in a data model not presented
here, due to space limitations. An instance of the type IndexPage is translated
to a JSP handling a list index needed to manage a data entity containing a
list of values in a browsable table widget. Each instance of type DetailsPage is
translated to a JSP showing the full content of a data entity as well as offering
the typically CRUD operations like insert and update. Figure 2b shows a SWAL
model of a simple address book application. The application starts with a page
for address search and prints its results to an address list page. Furthermore, the
user can navigate to a page where address details may be updated and stored in
a corresponding data entity.

The meta-model evolution step: Initially, it was decided that the start page
should be a plain HTML page. However, we might realize that the distinction
between dynamic pages and static ones is unnecessary and even annoying. For
example, in the address book application the search page cannot show previous
search parameters because of this decision. The search page is the start page and
therefore must be a StaticPage which cannot save any information in the session
environment. Therefore, we decide to merge class StaticPage and DynamicPage
in the meta-model (see Fig. 3). For the address book application, this means
that class SearchAddress must be retyped.

First we consider this meta-model change by adding and deleting elements
only, following the approach of [23]. Hence, we have to replace elements in the
type graph as well as in the instance graph. In particular in the instance graph

3 The development of SWAL was initiated by Manuel Wimmer and Philip Langer at
the Technische Universität Wien and reimplemented for its use in modeling courses
at Philipps-Universität Marburg.

49

(a) SWAL meta-model (b) AddressBook model

Fig. 2: Meta-model with instance model

Fig. 3: Evolved meta-model

we have to recreate nodes together with their context edges considering their
new types. By using our new approach we will later give a simplified version of
this particular transformation.

In Fig. 4, the co-span graph transformation is shown describing the meta-
model evolution step from Fig. 2a to Fig. 3 using an injective rule. Mappings are
indicated by numbers. This is done in two steps: first, a second reference start-
Page is added to the meta-model (see TU). Formally, this is done by a pushout
construction. Second, the former reference startPage and class StaticPage are
deleted from the meta-model (see TH). This is done by substracting TI − TR
from TU . Formally, we do a pushout complement construction which results in
a unique (up to isomorphism) graph TH for the case of co-span transformation
rules.

Figure 5 shows the new version of the meta-model evolution “Merge class”.
The evolution rule is more compact since the context of the classes does not
need to be considered by the rule. The merge is achieved by the non-injective
morphisms tl and tg. The right pushout is the id morphism i.e. nothing is deleted
here. Note that both outgoing inheritance arrows of the merged classes Dynam-
icPage and StaticPage are merged. This merge of inheritance arrows results from

50

Fig. 4: Evolution co-span transformation Delete sub-class

the property of the used category AIGraph (see [9]). Using the revised approach
instance elements only need to be retyped so that we do not need to consider
their context during their migration.

Fig. 5: Evolution co-span transformation Merge class

In Fig. 6 a model migration for the new meta-model evolution “Merge class”
is shown. The migration rule can be deduced in a similar way as discussed in [23].
The model migration basically does nothing except that class SearchAddress is
retyped. Retyping in the instance graph is performed in the first pushout. Hence
the graphs in the middle and the right side of the rule are the same. To save
space we do not show these graphs in Fig. 6 twice. If we do not have retyping
facilities available, page SearchAddress has to be recreated having a new type. In

51

addition, its context references have to be recreated. Note that the corresponding
migration rule would be a classical graph transformation rule, while the rule in
Fig. 6 is not: in Fig. 6 the graph is not changed but the typing morphisms. Note
further that the migration rule contains two pages not being changed. These are
included if we want that the migration shall contain all instances of types being
changed, this will be formalized as match completeness in Section 3.

Fig. 6: Migration co-span transformation Merge class

3 Extending the Theory

In this section we extend the theory on co-transformations. First we relax the def-
inition of co-span transformation and co-transformation given in [23]. Afterwards
we generalize the theory. In contrast to the definition of co-span transformation
in [23] the left morphism of the rule is no longer required to be injective. Since,
the theory should be applicable to different kinds of graphs, the theory is for-
mulated and proven in the context of (weak) adhesive High-Level-Replacement
(HLR) categories [6,13] in the long version of this paper [16]. In the following
we present the results for (typed) graphs.

Definition 1 (Graph). A graph G = (GV , GE , src
G, trgG) consists of a set GV

of vertices (or nodes), a set GE of edges (or arrows) and two maps srcG, trgG :
GE → GV assigning the source and target to each edge, respectively. e : x → y
denotes that srcG(e) = x and trgG(e) = y.

Definition 2 (Graph morphism). A graph morphism g : G → H consists
of a pair of maps gV : GV → HV , gE : GE → HE which preserve the graph
structure, i.e., for each edge e : x → y in G we have gE(e) : gV (x) → gV (y) in
H, i.e., gV ◦ srcG = srcH ◦ gE and gV ◦ trgG = trgH ◦ gE.

52

GV gV // HV

=

GE gE //

srcG

OO

VE

srcH

OO GV gV // HV

=

GE gE //

trgG

OO

VE

trgH

OO

Definition 3 (Co-span transformation rule). A co-span transformation rule

p = L
l−→ I

r←− R consists of graphs L, I and R and two jointly surjective graph
morphisms l and r where r is injective.

Definition 4 (Co-span transformation).
Given a co-span transformation rule

p = L
l−→ I

r←− R together with an in-
jective graph morphism m, called match, rule p
can be applied to G if a co-span double-pushout
exists as shown in the diagram on the right.

t : G
p,m
=⇒ H is called a co-span transformation.

L

m

��

l //

(PO1)

I

i

��
(PO2)

R

m′

��

roo

G g
// U H

h
oo

A co-span transformation rule is applied to a match m by first constructing
the pushout PO1 before constructing the pushout PO2 as pushout complement
of i ◦ r. A co-span transformation rule is only applicable iff the gluing condition
is satisfied.

Definition 5 ((Co-span) gluing condition). Given a (typed) co-span trans-

formation rule p = L
l−→ I

r←− R, a (typed) graph G, and a match m : L → G
with X = (XV , XE , src

X , trgX) for all X ∈ {L, I;R,G}, we can state the fol-
lowing defintions:

– The gluing points GP are those nodes and edges in L that are not deleted by
p, i.e. GP = (l(LV) ∪ (l(LE)) ∩ (r(RV) ∪ r(RE)).

– The dangling points DP are those nodes in L whose images under m are the
source or target of an edge in G that does not belong to m(L), i.e.
DP = {v ∈ LV |∃e ∈ GE\mE(LE) : src

G(e) = mV (v) or trgG(e) = mV (v)}.
p and m satisfy the gluing condition if all dangling points are also gluing

points, i.e. DP ⊆ GP .

Based on co-span transformations (rules), we now define co-transformation
(rules).

Definition 6 (Co-transformation rule).

A type graph rule tp = TL
tl−→ TI

tr←− TR together

with an instance graph rule p = L
l−→ I

r←− R form
a co-transformation rule (tp, p), if there are graph
morphisms tL : L→ TL, tI : I → TI and

TL
tl //

(1)

TI

(2)

TR
troo

L
l

//

tL

OO

I

tI

OO

Rr
oo

tR

OO

tR : R → TR such that both squares in the diagram on the right commute. In
such a co-transformation rule (tp,p), the type graph transformation rule tp is
called an evolution rule while the instance graph transformation p is called a
migration rule wrt. tp. We also say that migration rule p is well-typed wrt. tp.

53

Corresponding addition and deletions can be reflected in a co-transformation
rule.

Definition 7 (Reflecting migration rules). Consider a co-transformation
rule (tp, p) like in the figure above. A co-transformation rule (tp, p) is called

1. addition-reflecting if TL
tl−→ TI

tI←− I is a pushout (left square).

2. deletion-reflecting if I
r←− R

tR−→ TR is a pullback (right square).

We also say that migration rule p is addition-reflecting or deletion-reflecting wrt.
tp.

A co-transformation rule applied to meta-model and model forms a co-
transformation.

Definition 8 (Co-transformation). Two co-span graph transformations

tt : TG
tp,tm
=⇒ TH and t : G

p,m
=⇒ H that apply co-transformation rule (tp, p) to

instance graph G being typed over graph TG by tG : G → TG form a co-trans-
formation (tt, t), if there are graph morphisms tU : U → TU , and tH : H → TH
such that all faces of Fig. 7 commute. In such a co-transformation (tt, t), the type

graph transformation tt : TG
tp,tm
=⇒ TH is called an evolution while the instance

graph transformation t : G
p,m
=⇒ H is called a migration wrt. tt. (tm,m) with

tm : TL→ TG and m : L→ G is called the match of the co-transformation rule

(tp, p). If G
m←− L

tL−→ TL is a pullback (left face) then the co-transformation
(tt, t) is called match-complete.

tG

tL

tU

tI

tH

tR

g

l

h

r

m
i

m′PO1t PO2t

H

R

U

I

G

L

tg

tl

th

tr

tm ti
tm′PO1tt PO2tt

TH

TR

TU

TI

TG

TL

Fig. 7: Co-transformation

Note that PO2t exists only if the gluing condition is satisfied for p (see Def-
inition 5). The gluing condition has to hold for both transformations of the
co-transformation. In specific cases, however, a satisfied gluing condition on the
meta-model level implies a satisfied gluing condition on the model level [16].

54

Proposition 1. Let (tt, t) with tt : TG
tp,tm
=⇒ TH and t : G

p,m
=⇒ H be a co-

transformation with migration rule p deduced by the following construction:

1. Construct G
m←− L

tL−→ TL as pullback of G
tG−→ TG

tm←− TL

2. Complete L
tL−→ TL

tl−→ TI by L
l−→ I

tI−→ TI to a commuting square

3. Construct I
r←− R

tR−→ TR as pullback of I
tI−→ TI

tr←− TR

If tm satisfied the gluing condition wrt. to rule tp, then m satisfies the gluing
condition wrt. rule p.

Proof can be found in [16].

Theorem 1 (existence of match-complete co-transformation). Given

a co-span graph transformation tt : TG
tp,tm
=⇒ TH (describing the evolution of

type graph TG, see Fig. 7) and a graph G typed by TG with typing morphism

tG : G→ TG then there exists a co-span graph transformation t : G
p,m
=⇒ H (de-

scribing a corresponding model migration) such that:

1. migration rule p is deletion-reflecting wrt. evolution rule tp
2. (tt, t) forms a match-complete co-transformation

Note that in the example in Section 2, the evolution and migration shown
form a match-complete, deletion-reflecting co-transformation. See Fig. 5 together
with Fig. 6.

Corollary 1 (unique typing of co-transformation). Given a deletion-
reflecting co-transformation rule (tp, p) with an applicable complete match (tm,m)
on a type graph TG with instance graph G: then migration t is uniquely typed by
evolution tt (up to isomorphism), i.e. tU and tH are uniquely determined (see
Fig. 7).

Proof can be found in [16].

4 Related Work

Co-evolution of structures has been considered in several areas of computer
science such as for database schemes, grammars, and meta-models [15,14,18,21].
Especially database schema evolution has been a subject of research in the last
decades. However, the challenge of schema evolution differs from meta-model
evolution with model migration for various reasons. To mention only a few:
while models usually are hold in the main memory, database tables often can-
not. Hence schema evolution is often considered on the level of implementation
focusing on the efficiency of the migration. Moreover data should be retrieved
via queries. It means that the structure of stored information has to be con-
sidered when formulating a query, but the query response is one joint relation
even containing duplicate entries. Hence, research considering schema evolution
is often concerned with the relation between database queries and the database

55

schemes [5,4]. In MDE, structural information usually has to be reflected in gen-
erated artifacts. Furthermore the basic constraints of relational databases are
only a few, i.e. primary key constraint, foreign key constraint and typing [4]. In
modelling one need more complex constraints to specify complex business rules.
In addition, in relational models, retyping of tuples i.e. tables is slightly different
since there is no concept of inheritance.

Recently, research activities have started to consider meta-model evolution
and to investigate the transfer of schema evolution concepts to meta-model evo-
lution (see e.g. [10]). Our work differs from other work on model co-evolution such
as e.g.[11,20] since we are more concerned with the correctness of model migra-
tions with respect to checkable criteria rather than tooling. In the following, we
focus on related work that considers merging of types while we refer to a general
discussion of related work in paper [23]. [11] provides an overview of approaches
that considers the coupled evolution of meta-models and models. Merging is con-
sidered in three papers, one describing the meta-model evolution tool COPE [10]
and two papers considering merging of types in object-oriented databases [3,19].
The mentioned approaches provide basic merge operators with implementation
descriptions based on retyping, addition and deletion of elements.

König et al. [12] also consider model evolution correctness criteria based on
a categorical framework. However, König et al. work with an indexed view of
models and employ functor-based folding and unfolding constructions instead
of algebraic graph transformation. In addition, we tackle the problem of model
co-evolution while König et al. target the migration of large data.

In object-oriented database schema evolution, merging of types is considered
on the level of set theory [1]. Furthermore, merging of types has also been con-
sidered in the context of relational databases [5] and ontology evolution [17].
To the best of our knowledge merging of types has not been considered in the
context of graphs and graph transformation before.

5 Conclusion

In [23] we introduce co-span co-transformations that allow adding and deleting
of elements in type and instance graphs. In this paper we extend the theory
of co-transformations by allowing co-evolution rules that enable us to specify
merging of types with corresponding retyping of model elements. By applying
this feature, meta-model evolutions as well as migrations can be specified easier
since merging of elements is naturally supported and has not to be emulated
by adding and deleting actions. In Theorem 1 we show that there is always a
match-complete and deletion-reflecting co-transformation given an evolution and
a typed graph. Corollary 1 states that the application of a deletion reflecting co-
transformation always results in a unique typing. The example in Section 2 shows
a typical co-evolution case with merging. While the presented approach considers
co-transformations on a theoretical level, providing correctness criteria for model
migrations, we plan to use these criteria in future tool support. Furthermore in
the future we plan to consider evolution rules including constraints.

56

References

1. Alhajj, R., Polat, F.: Rule-based schema evolution in object-oriented databases.
Knowledge-Based Systems 16(1), 47–57 (2003)

2. Barr, M., Wells, C.: Category Theory for Computing Science (2nd Edition). Pren-
tice Hall (1995)

3. Bréche, P.: Advanced Primitives for Changing Schemas of Object Databases. In:
CAiSE’96. LNCS, vol. 1080, pp. 476–495 (1996)

4. Curino, C., Moon, H.J., Deutsch, A., Zaniolo, C.: Update Rewriting and Integrity
Constraint Maintenance in a Schema Evolution Support System: PRISM++. Pro-
ceedings of VLDB 2010: 36th International Conference on Very Large Database
Endowment 4(2), 117–128 (2010)

5. Curino, C., Moon, H.J., Ham, M., Zaniolo, C.: The PRISM Workwench: Database
Schema Evolution without Tears. In: Ioannidis, Y.E., Lee, D.L., Ng, R.T. (eds.)
Proceedings of ICDE 1999: 25th International Conference on Data Engineering.
pp. 1523–1526. Proceedings of ICDE 1999: 25th International Conference on Data
Engineering (2009)

6. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer (March 2006)

7. Ehrig, H., Hermann, F., Prange, U.: Cospan DPO Approach: An Alterna-
tive for DPO Graph Transformation. EATCS Bulletin 98, 139–149 (2009),
http://tfs.cs.tu-berlin.de/publikationen/Papers09/EHP09.pdf

8. EMF Migrate: Project Web Site, http://www.emfmigrate.org
9. Hermann, F., Ehrig, H., Ermel, C.: Transformation of Type Graphs with Inher-

itance for Ensuring Security in E-Government Networks. In: Fundamental Ap-
proaches to Software Engineering, 12th Int. Conference, FASE 2009. vol. LNCS
5503, pp. 325–339. Springer (2009), long version as TR 2008-07 at TU Berlin

10. Herrmannsdoerfer, M., Benz, S., Jürgens, E.: COPE - Automating Coupled Evolu-
tion of Metamodels and Models. In: Drossopoulou, S. (ed.) Proceedings of ECOOP
2009: 23rd European Conference on Object-Oriented Programming. Lecture Notes
in Computer Science, vol. 5653, pp. 52–76. Springer (2009)

11. Herrmannsdoerfer, M., Vermolen, S., Wachsmuth, G.: An Extensive Catalog of
Operators for the Coupled Evolution of Metamodels and Models. In: Malloy, B.A.,
Staab, S., van den Brand, M. (eds.) SLE: Proceedings of the 3nd International
Conference of Software Language Engineering. LNCS, vol. 6563, pp. 163–182 (2010)

12. König, H., Löwe, M., Schulz, C.: Model Transformation and Induced Instance Mi-
gration: A Universal Framework. In: da Silva Simão, A., Morgan, C. (eds.) Proceed-
ings of SBMF 2011: 14th Brazilian Symposium on Formal Methods, Foundations
and Applications. Lecture Notes in Computer Science, vol. 7021, pp. 1–15. Springer
(2011)

13. Lack, S., Sobocinski, P.: Adhesive Categories. In: Walukiewicz, I. (ed.) Proceedings
of FoSSaCS 2004: 7th Foundations of Software Science and Computation Struc-
tures. Lecture Notes in Computer Science, vol. 2987, pp. 273–288 (2004)

14. Lämmel, R.: Grammar Adaptation. In: FME. pp. 550–570 (2001)
15. Li, X.: A Survey of Schema Evolution in Object-Oriented Databases. In: TOOLS.

pp. 362–371. IEEE Computer Society (1999)
16. Mantz, F., Taentzer, G., Lamo, Y.: Co-Transformation of Type and

Instance Graphs Supporting Merging of Types with Retyping: Long
Version. Technical report, Department of Mathematics and Com-
puter Science, University of Marburg, Germany (September 2012),
www.uni-marburg.de/fb12/forschung/berichte/berichteinformtk

57

17. Noy, N.F., Klein, M.C.A.: Ontology Evolution: Not the Same as Schema Evolution.
Knowledge-Based Systems 6(4), 428–440 (2004)

18. Pizka, M., Juergens, E.: Automating Language Evolution. In: TASE ’07: Proceed-
ings of the First Joint IEEE/IFIP Symposium on Theoretical Aspects of Software
Engineering. pp. 305–315. IEEE Computer Society, Washington, DC, USA (2007)

19. Pons, A., Keller, R.K.: Schema Evolution in Object Databases by Catalogs. In:
IDEAS’97. pp. 368–378 (1997)

20. Rose, L., Kolovos, D., Paige, R.F., Polack, F.A.C.: Model Migration with Epsilon
Flock. In: Tratt, L., Gogolla, M. (eds.) Proceedings of ICMT 2010: 3rd International
Conference on Theory and Practice of Model Transformation. Lecture Notes in
Computer Science, vol. 6142, pp. 184–198. Springer (2010)

21. Sprinkle, J., Karsai, G.: A domain-specific visual language for domain model evo-
lution. J. Vis. Lang. Comput. 15(3-4), 291–307 (2004)

22. Sprinkle, J., Rumpe, B., Vangheluwe, H., Karsai, G.: Metamodelling - State of the
Art and Research Challenges. In: Model-Based Engineering of Embedded Real-
Time Systems. LNCS, vol. 6100, pp. 57–76. Springer (2010)

23. Taentzer, G., Mantz, F., Lamo, Y.: Co-Transformation of Graphs and Type Graphs
With Application to Model Co-Evolution. In: Ehrig, H., Engels, G., Kreowski, H.J.,
Rozenberg, G. (eds.) Proceedings of ICGT 2012: 6nd International Conference on
Graph Transformations. Lecture Notes in Computer Science, vol. 7562. Springer
(2012)

58

Big Red: A Development Environment for
Bigraphs

Alexander Faithfull, Gian Perrone, and Thomas T. Hildebrandt

IT University of Copenhagen, Denmark
{alef,gdpe,hilde}@itu.dk

Abstract. We present Big Red, a visual editor for bigraphs and bigraph-
ical reactive systems, based upon Eclipse. The editor integrates with sev-
eral existing bigraph tools to permit simulation and model-checking of
bigraphical models. We give a brief introduction to the bigraphs formal-
ism, and show how these concepts manifest within the tool using a small
motivating example bigraphical model developed in Big Red.

Keywords: bigraphs, editor, reactive systems

1 Introduction

Bigraphical reactive systems are a class of graph-rewriting systems designed to
capture orthogonal notions of connectivity and locality through the use of two
graph structures — a place graph, and a link graph. They were first proposed
by Robin Milner [5] to address the challenges associated with modelling of ubiq-
uitous computing applications. Bigraphs have been successful in capturing the
syntax and semantics of a number of well-known formalisms and real-world ap-
plications1.

The Big Red tool is a prototype editor to support the development of bigraphs
and bigraphical reactive systems in a visual manner. It interfaces with existing
bigraph tools such as the BigMC bigraphical model checker [6] to permit the
execution of models. Big Red aims to make bigraphs more accessible to novice
users, as well as providing development support to more experienced bigraph
users. Bigraphs have a visual presentation that is formal and unambiguous, and
one of the major benefits is the ability to present a relatively complex bigraphical
model in a way that is comprehensible by non-experts. This is the motivation
for the development of Big Red: making it easier to create and interact with
bigraphs increases the applicability and utility of the formalism in more diverse
application areas.

Below we first briefly in Section 2 describe the previous efforts to imple-
ment bigraphical reactive systems. We then proceed in Section 3 describing how
bigraphs are expressed in Big Red, using a small example of a context-aware
printing system, inspired by that given in [1]. Finally, Section 4 briefly describes
the implementation of the tool, and suggests ways in which it may be extended
using additional modules.

1 Some examples are available from http://bigraph.org/papers/gcm2012/.

59

2 Related Work

One of the first attempts at creating a graphical editor for bigraphs was within
the Bigraphspace [3] project in 2009, during which a prototype bigraph editor
based upon eclipse was developed; however, this work was never completed, and
no usable editor currently exists. Bigraphspace used the correspondence between
the structure of bigraphs and XML documents [4] to provide a tuplespace-like
API with which to manipulate bigraphs. Big Red differs from these efforts in
that it implements editing of Milner’s bigraphs in such a way as to enable ex-
ternal tools to perform further analysis of these models, rather than imposing a
particular (extra-bigraphical) semantics upon the models.

To date, bigraphical reactive systems have been largely implemented using
term representations of bigraphs, such as that used in the BPLtool [2], or in
the BigMC model checker [6]. While this is appropriate for bigraph experts, it
presents a significant learning curve for novice users, and ignores the benefits
provided by the formal graphical syntax provided by bigraphs.

3 Bigraphs in Big Red by Example

A bigraph is a forest of node labelled trees called the place graph, the roots of
which are indexed by integers, and referred to as regions. The place graph parent
relationship is usually drawn by nesting in the graphical syntax. The label of
a non-root place graph node is referred to as its control, and is drawn from
the bigraph signature. We will use “X node” to mean a node that is labelled
with the control X. The control of a node also defines the number of ports of
the node, referred to as the arity of the control and provided by a function
ar : Σ → ω given as part of the signature. The link graph can be viewed as
a directed hypergraph with edges mapping a subset of the complete set of all
ports of nodes in the place graph and the inner names of the bigraph to either
a (single) outer name or a single edge. By convention, outer names are drawn
above the bigraph, while inner names are drawn below the bigraph.

Fig. 1. An example bigraph expressed in the visual syntax of the Big Red tool.

60

Fig. 1 is an example bigraph constructed within Big Red for a context-aware
printing system, inspired by that given in [1]. The example scenario involves a
building in which users can submit print jobs to a print spool, and then move
into a room with any printer connected to that print spool, at which point the
printer will complete the job. The rooms of the buidling are represented by place
graph nodes labelled with the control R. Similarly, the users, printers, central
print spool and print jobs are represented by place graph nodes labelled with
the controls U, P, S, and J respectively. All controls in this example have arity
1, meaning that every (non-root) node of the place graph has a single port. The
port of a room (R) node is linked to ports of other R nodes that are connected
to the room by a door. The port of a user (U) node is linked to an outer name
representing the identity of the user. The port of a printer (P) node is linked
to the port of the spool (S) node representing the printer spool the printer is
connected to. Finally, the port of a job (J) node will be linked to the port of the
user node to which the job belongs.

The bigraph in Fig. 1 thus represents a single print spool and two rooms
connected by a door (represented by the yellow link between the ports of the
room nodes). The left room contains a printer which is linked to the print spool,
and the right room contains a user with the identity User given as an outer name.
The user has a job which has not yet been linked to the user (as long as it has
not left the user, its ownership is given implicitly by its location).

Big Red permits users to specify custom shapes for nodes associated with
each type of control. In this example, rooms are represented as boxes, users as
triangles, jobs as circles, etc. The shaded box User is an outer name that is
linked to a port of the U node. We reiterate Milner’s bigraph definition [5] here:

(V,E, ctrl, prnt, link) : 〈n,X〉 → 〈m,Y 〉
where V is the set of nodes, E is a set of edges, ctrl : V → Σ assigns controls
to nodes drawn from a signature Σ, prnt : m] V → V]m is the parent map
that gives the nested place graph structure, and link : X] P → E] Y is the
link map, where P = {(v, i) : v ∈ V ∧ i ∈ 0 . . . ar(ctrl(v))} is the set of all ports.

Dynamic behaviour is added to a bigraph model by adding a set of reaction
rules. The JobToSpool rule shown in Fig. 2, in both the visual syntax of Big Red
and the textual syntax of BigMC, allows a print job to be transferred from a
user to a spool, adding an identifying link to connect users to their submitted
print jobs. The JobToPrinter rule in Fig. 3 will transfer a job from the spool to a
printer that is co-located with the user associated with that job. The full example
contains also rules for removing completed jobs and allowing users to move
between rooms and is available from http://bigraph.org/papers/gcm2012.

Note that the rules are parametric in the sense that both the user and the
spool node in Fig. 2 contains a hole, which Big Red represents as shaded place
graph leaf nodes, indexed by integers, and in the BigMC syntax as $1 and $2.
This means that both the user and spool node may contain other nodes (e.g.
other job nodes) which in this example are left un touched by the rule. Interested
readers are referred to [5] for detailed description of bigraphs and bigraphical
reactive systems.

61

User[x].(Job[-] | $1) || Spool[y].$2 -> User[x].$1 || Spool[y].($2 |

Job[x]);

Fig. 2. The JobToSpool rule

Room[c].(Printer[a] | User[b].$3 | $1) || Spool[a].(Job[b] | $2) ->

Room[c].(Printer[a].Job[b] | User[b].$3 | $1) || Spool[a].$2;

Fig. 3. The JobToPrinter rule

4 Implementation

Big Red is implemented as an Eclipse plugin, which extends the Eclipse platform
with additional file formats representing the objects of a bigraphical reactive sys-
tem, wizards to create model files, and editors to modify them. In turn, Big Red
defines several Eclipse extension points: these allow other plugins to contribute
extensions to Big Red, adding support for new external tools and export formats.

Big Red’s implementation of the bigraphical model strikes a balance between
theoretical purity and practicality. No extensions to the bigraphical model are
implemented, but the classes have been designed with extensibility in mind;
as a result, adding new concepts to the model is easy. Indeed, Big Red uses
these mechanisms to implement some of its own functionality — the information
used to draw and position objects, for example, has no specific support in the
underlying model.

The Eclipse platform includes comprehensive libraries to support the building
of modelling tools. At the heart of these is the Graphical Editor Framework, a

62

toolkit for implementing model-view-controller-based editors. Big Red’s bigraph
and reaction rule editors are both built on this powerful and flexible component.

Quite apart from its specific support for modelling tools, Eclipse is a very
portable and widely-used platform with a vibrant community and many pre-
built features, which makes it an ideal choice for the rapid development of an
editor.

4.1 Interacting with External Tools

Big Red defines a special extension point for plugins that want to operate on
a complete bigraphical reactive system. When an extension registered with this
point is activated, Big Red’s user interface is suspended, and the extension takes
over — essentially, this gives developers the ability to write subprograms that
work with Big Red’s model objects without having to delve too deeply into the
workings of Eclipse.

The integration between Big Red and BigMC [6] is implemented in this way
— as an external plugin which converts a Big Red model into its BigMC term
language representation, executes BigMC as a subprocess, and parses the results
back into Big Red model objects so that they can be visualised.

5 Conclusion

We have presented a brief introduction to the Big Red tool, and described the
motivation for developing such a tool. Big Red and accompanying user documen-
tation are available under the Eclipse Public License from http://bigraph.org.

Big Red is still under active development. We intend to integrate support
for other bigraph tools, and — together with the University of Udine — we are
working on developing Big Red into a generally-useful platform for building and
hosting new tools for bigraphs.

References

1. L. Birkedal, S. Debois, E. Elsborg, T.T. Hildebrandt, and H. Niss. Bigraphical mod-
els of context-aware systems. In Foundations of Software Science and Computation
Structures, pages 187–201. Springer, 2006.

2. A.J. Glenstrup, T.C. Damgaard, L. Birkedal, and E. Højsgaard. An implementation
of bigraph matching. 2007.

3. C. Greenhalgh. bigraphspace, 2009.
4. T.T. Hildebrandt, H. Niss, and M. Olsen. Formalising Business Process Execution

with Bigraphs and Reactive XML. In COORDINATION’06, volume 4038 of Lecture
Notes in Computer Science, pages 113–129. Springer-Verlag, January 2006.

5. R. Milner. The Space and Motion of Communicating Agents. Cambridge University
Press, 2009.

6. G. Perrone, S. Debois, and T.T. Hildebrandt. A Model Checker for Bigraphs. In
ACM Symposium on Applied Computing 2012 – Software Verification and Testing
Track. ACM, 2012.

63

XL4C4D – Adding the Graph Transformation
Language XL to CINEMA 4D

Ole Kniemeyer1 and Winfried Kurth2

1 MAXON Computer GmbH, Max-Planck-Str. 20, 61381 Friedrichsdorf, Germany
2 Georg-August-University Göttingen, Department of Ecoinformatics,

Biometrics and Forest Growth, Büsgenweg 4, 37077 Göttingen, Germany

Abstract. A plug-in for the 3D modeling application CINEMA 4D is
presented which allows to use the graph transformation language XL
to transform the 3D scene graph of CINEMA 4D. XL extends Java by
graph query and rewrite facilities via a data model interface, the default
rewrite mechanism is that of relational growth grammars which are based
on parallel single-pushout derivations. We illustrate the plug-in at several
examples, some of which make use of advanced 3D features.

1 Introduction

Most 3D modeling systems represent their 3D content as a scene graph. In gen-
eral, this is a directed acyclic graph or even just a tree, where nodes contain
geometry data and further properties, while edges define spatial and logical re-
lations between nodes. E.g., the coordinate system of a node is typically inherited
to its children, and often this also holds for properties like the color.

To create and modify the scene graph, 3D modeling applications typically
do not only provide direct user interaction, but also built-in (textual or visual)
programming languages. But none of these languages makes use of graph trans-
formation techniques, although they suggest themselves for such a language,
given the underlying scene graph.

What has been used for 3D scene graph creation are L(indenmayer)-systems
[1], starting with the successful specification of 3D plant models, and nowadays
this parallel string-rewriting formalism is directly supported by many 3D mod-
eling applications. But as it is based on strings, it necessitates an additional
interpretation step from strings to graphs. In previous research, we developed
relational growth grammars as a rewriting mechanism for graphs which incorpo-
rates both the possibilities and ease of use of L-systems (but applied to graphs)
and of true graph transformations based on single-pushout derivations [2, 3].

We also developed a textual programming language XL which extends Java
by graph transformation syntax and semantics. This can be used to implement
relational growth grammars, and there is a ”reference implementation” within
the Java-based open-source 3D platform GroIMP [4]. This software has been
developed with the needs of relational growth grammars and plant modeling in
mind, so it provides strong support for this field of application, while it has fewer
general 3D features than traditional all-purpose 3D modeling systems.

64

Through the data model interface of XL, it is possible to let XL operate on
any kind of graph. We will present an implementation for the scene graph of
CINEMA 4D [5] as a plug-in, and we will show some examples of its application.

Graph transformations can not only be used at the topological level of scene
graphs, but also to model the geometry itself which is usually described as a
polygon mesh. Typical operations on a mesh like extrusion [6] or subdivision
[7, 6] can be modelled as graph transformations. We haven’t implemented such
facilities for the plug-in, but it could be done based on the vv approach [8, 3].

2 Relational Growth Grammars and XL

In this section, we give a short overview of relational growth grammars (RGG)
and the XL programming language, for more details see [2, 3]. RGG graphs are
typed attributed graphs with inheritance [9], but without attributes for edges.
This reflects the typing system of object-oriented programming, and it allows to
store any kind of graphical and non-graphical information at nodes.

For the rewriting mechanism of RGG, the single-pushout (SPO) approach
with parallel derivations turned out to be most suitable. In their pure shape,
SPO productions cannot easily describe L-system-like rules: In L-systems, the
left-hand side is completely replaced by the right-hand side, but SPO productions
need nodes common to both sides. As a solution, we added the operator approach
[10] to RGG which establishes connection transformations from nodes of the old
host graph to nodes of the derived graph. These connection transformations are
then used to create additional edges in the derived graph.

XL is a proper extension of Java. The main new features are rule blocks and
graph queries. A rule block can be used everywhere where Java allows a normal
code block, it is distinguished by square brackets. This example shows a block
with a single rule of L-system kind, namely the rule for the snowflake curve [1]:

[F(x) ==> F(x/3) RU(60) F(x/3) RU(-120) F(x/3) RU(60) F(x/3);]

It has the following semantics: For each node of class F, remove it from the
graph and insert a chain of seven new nodes. The new nodes are of the classes F
and RU, and the chain is established by edges of the default type (indicated by
whitespace). Due to the L-system kind, connection transformations are implicitly
added so that the leftmost (rightmost) new F node inherits the parents (children)
from the deleted F node or, if those parents (children) have also been deleted,
the rule application successors of the parents (children).

Furthermore, the rule uses the variable x, which is set to the default attribute
of the matched F node, to initialize the F nodes with x/3. In terms of Java, this
is just a constructor invocation, so the new nodes are created by new F(x/3).
Also the RU nodes are initialized with numerical values. Now if F(x) nodes stand
for lines of length x and RU(a) nodes for rotations about an angle a, all within
a scene graph, this is the exact translation of the rule of the snowflake curve.

Tree-like patterns on the left-hand or right-hand side can be specified by
surrounding the children of a node with square brackets (a traditional notion of
L-systems). For example, the following rule creates a simple binary tree:

65

Tip ==> F(100) [RU(30) RH(90) Tip] [RU(-30) RH(90) Tip];

A Tip is replaced by a line segment of length 100 followed by two child
branches, each of which starts with some rotations and ends with a new Tip.

Pure SPO productions are indicated by the rule arrow ==>>. The rule

a:Monomer, b:Monomer ==>> i f (condition) (a -bond-> b) else (a, b);

finds two Monomer nodes which need not have any relationship (the comma
indicates a disconnected pattern), binds the matches to the identifiers a, b, and
if a condition is fulfilled, creates a bond-typed edge, otherwise nothing happens.

Graph queries are like normal Java expressions, but they yield multiple values
– one per match. They are enclosed by (* *) and otherwise have the same syntax
as left-hand sides. E.g., with (* a -bond-> b *) we can check if there is a bond-
typed edge between known nodes a, b. That could be used in the condition of
the previous example to create bond edges only if they don’t exist yet.

All graph operations of XL are defined on top of an abstract data model
interface. By implementation of this interface, XL can operate on any kind of
graph. The most sophisticated implementation exists for GroIMP, but there are
also implementations for XML documents or minimalistic Sierpinski graphs [3].

3 The Plug-In XL4C4D and Its Application

The 3D modeling system CINEMA 4D provides a C++ SDK which allows to
write custom plug-ins. With the help of the Java Native Interface as a bridge
between Java and C++, we implemented XL’s data model interface for CINEMA
4D’s scene graph. The plug-in (available at [4]) provides a scene graph object
XLObject which stores XL source code and a console where output from XL is
shown and which also allows to interactively execute XL statements.

Fig. 1(a) shows a screenshot of CINEMA 4D with the snowflake example.
The code properties of the single XLObject are opened. The complete code is

public class Main extends XLObject {

public void init() [==>> ^ F(1000) RU(-120) F(1000) RU(-120) F(1000);]

public void grow()

[F(x) ==> F(x/3) RU(60) F(x/3) RU(-120) F(x/3) RU(60) F(x/3);]

}

grow has been discussed in the previous section. init uses the special sym-
bol ^ which in general stands for the root of the graph. For XL4C4D this is
the XLObject node, so init adds the nodes of the initial snowflake triangle as
descendants of that node. init is invoked interactively by selecting init in a drop-
down menu of available methods and clicking on the button Invoke. Afterwards,
one selects grow and clicks on Invoke as many times as desired.

The plug-in provides several standard node classes for L-system models (F,
RU, RL, RH, M for pure movement), but also extended ones like Sphere, Cube,
Instance, Null or even Spring for physics simulations. Each node of such a
class corresponds to a CINEMA 4D object of suitable type, e.g., pure rotation
and movement nodes are represented as Null objects in the scene graph.

66

(a)

(b)

(c)

Fig. 1. (a) Screenshot showing the plug-in; (b) binary tree; (c) polymerization model

The binary tree model from Fig. 1(b) is based on the rule from the previous
section. It uses the Sphere class to show tips as spheres. This is done by a module
declaration, which is basically a simplified form of a complete class declaration:

public class Main extends XLObject {

module Tip extends Sphere(20);

public void init() [==>> ^ Tip;]

public void grow() [Tip ==> F(100) [RU(30) RH(90) Tip]

[RU(-30) RH(90) Tip];]

}

So far the examples don’t use any of CINEMA 4D’s advanced features. One
such feature is the Dynamics module which provides a rigid body simulation.
With its help we can create a toy model of polymerization based on the Monomer
rule from above: A lot of Monomer spheres move around according to the laws of
physics. At each frame (i.e., each simulation step), it is checked if two monomers
come close to each other. If so, the rule triggers and creates a bond. It will
also create a new spring object for the rigid body simulation so that the bond
actually manifests itself in the simulation. The complete polymerization rule is

a:MonomerA, b:MonomerB ==>>

i f (empty((* a -bond-> b *)) && (distance(a, b) < 50)) (

a -bond-> b, ^ Spring(a, b)

) else (a, b);

In addition to the original rule, we use two monomer types, and bonds are
only created between monomers of different type. The setup of the simulation
environment is done manually. The result after some simulation steps is shown
in Fig. 1(c).

67

4 Discussion

The structure of CINEMA 4D’s scene graph is well-suited for the application of
XL. The shown examples could be adapted from their original GroIMP imple-
mentations [3] without major changes, and they could easily be combined with
advanced features like Dynamics. In fact, the GroIMP implementation of the
polymerization has to include some simple simulation rules for monomer move-
ment which are superfluous for XL4C4D. There are a lot more features from
animation to sophisticated rendering from which one can benefit.

On the other hand, the Java Native Interface introduces a performance bot-
tleneck, and CINEMA 4D isn’t able to handle very large amounts of objects or
deep structures efficiently. So the system is not suitable for graphs of million
nodes, which may appear in detailed plant models and which can be handled by
GroIMP. E.g., the snowflake example allows only up to three iterations, reaching
a graph depth of 384.

Therefore, in its current state, XL4C4D is a useful addition for CINEMA 4D
if one wants to create and modify the graph of scenes within the typical domain
of CINEMA 4D such as motion graphics, while GroIMP much better fits the
needs of academic research.

References

1. Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer,
New York (1990)

2. Kniemeyer, O., Barczik, G., Hemmerling, R., Kurth, W.: Relational growth gram-
mars – a parallel graph transformation approach with applications in biology and
architecture. In Schürr, A., Nagl, M., Zündorf, A., eds.: AGTIVE 2007. Volume
5088 of Lecture Notes in Computer Science., Springer (2008) 152–167

3. Kniemeyer, O.: Design and Implementation of a Graph Grammar Based Language
for Functional-Structural Plant Modelling. PhD thesis, BTU Cottbus (2009)

4. Kniemeyer, O., Hemmerling, R., Kurth, W.: GroIMP http://www.grogra.de.
5. MAXON Computer GmbH: CINEMA 4D http://www.maxon.net.
6. Bellet, T., Poudret, M., Arnould, A., Fuchs, L., Gall, P.L.: Designing a topological

modeler kernel: A rule-based approach. In: Shape Modeling International, IEEE
Computer Society (2010) 100–112

7. Spicher, A., Michel, O., Giavitto, J.L.: Declarative mesh subdivision using topo-
logical rewriting in MGS. In Ehrig, H., Rensink, A., Rozenberg, G., Schürr, A.,
eds.: ICGT. Volume 6372 of Lecture Notes in Computer Science., Springer (2010)
298–313

8. Smith, C., Prusinkiewicz, P., Samavati, F.F.: Local specification of surface sub-
division algorithms. In Pfaltz, J.L., Nagl, M., Böhlen, B., eds.: AGTIVE 2003.
Volume 3062 of Lecture Notes in Computer Science., Springer (2003) 313–327

9. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer, Secaucus, NJ, USA (2006)

10. Nagl, M.: Graph-Grammatiken: Theorie, Anwendungen, Implementierungen.
Vieweg, Braunschweig (1979)

68

On Derivation Languages of DPO Graph
Transformation Systems. Part 1:

Introducing Derivation Languages

Nils Erik Flick

Fachbereich Informatik, MIN-Fakultät, Universität Hamburg, DE
email: flick AT informatik.uni-hamburg.de

Abstract. We investigate sequential derivation languages associated
with injective double-pushout rewriting systems over finite graphs as a
loose generalisation of the corresponding notions of free-labeled Petri net
languages, in two variants: without termination rules or with a special
rule that terminates a derivation as soon as it applies.
We obtain a first set of results comparing these languages with other well-
known classes. In particular, we exhibit simulation relationships with
automaton models to show that a class of languages of systems with rule-
based termination properly contains the context-free languages as well as
the derivation languages of type 0 grammars. All of these languages are
decidable in nondeterministic space O(n log n), since that is sufficient to
simulate the graph transformation system.

1 Introduction

It is somewhat unusual to consider graph transformation systems as generators of
string languages; however, to motivate this paper we argue that these questions
are interesting, in their own right and because steps towards better analysis,
verification and also synthesis from behavioural specifications, of graph trans-
formation systems are gaining importance. Recasting other known formalisms
as special cases of graph transformation systems after forging some generic tools
for understanding their languages is also a main motivation. The subject of lan-
guages also came up in the context of a more general discussion on the synthesis
of graph transformation systems from infinite transition systems specifying the
possible state transitions in the system, and can be of use in that context. One
usually considers derivation languages of string grammars, often with the goal
at providing a notion of controlled application of rules.

Graph transformation systems are related to non-deterministic automata in
that events are state transitions, the occurrence of events being governed by the
state of the system. If a certain subobject exists in it which happens to be the
precondition of a rule a, that rule can be applied, which generates an event of
type a. The transition rules also have postconditions, which after application
replace the preconditions in the global state. The pre- and postcondition may
have common parts, that must be present for the rule to apply, but are pre-
served. It is important to remember that in classical Petri nets, which are very

69

special transformation systems of the kind studied here [KKHK06], the effect
of a transition is always the same and can be simply be added to the state. In
general graphs, the preconditions for a certain event to occur and the description
of the possible successor states are more complicated.

The paper is constructed as follows. Section 2 lists related work. Section 3
reviews the definitions of the underlying formalisms, which can also be found in
the literature. Section 4 contains the results of this paper, which are inclusion
relations with other language classes, and the undecidability of some problems
which follows directly. Section 5 finishes the presentation with an outlook.

2 Related Work

In this section we have gathered some references, both old and new, about related
concepts. Szilárd languages, as derivation languages of Chomsky grammars, and
Petri net languages appeared in the seventies. There is a connection between
both kinds of languages, as pointed out in [CRM77] – at least for context free
languages, one can turn non-terminals into places, productions into transitions
and obtain a Petri net that has the derivation language of the grammar as its
set of firing sequences ending in a deadlock or empty marking.

We stress the connection to grammars because graph transformation systems
with termination criterion can be used as graph grammars for generating sets of
graphs, and graph grammars are also a generalisation of string grammars, where
strings are encoded as linear labeled graphs [KKHK06]. Concepts of regularity
and context-freeness have been formulated [Kre79] [CE95] [Ev97] in this context,
see also [Hab92] for the related notion of hyperedge replacement grammars. A
study of the derivation languages, however, seems to be missing.

A lot more is known about Petri net languages: [Bac11] answers a question
raised in [Dar04], where net synthesis from infinite structures is handled. Their
questions include finding a Petri net which generates a given language or possibly
a superset of it, if an exact realisation is not possible. That question was found
by Badouel and Darondeau to be decidable for deterministically context free
languages, though undecidable for context free languages in general. Bachmann
exactly characterises the languages for which Petri net synthesis is decidable, by
semilinearity and prefix-closedness.

Hack [Hac76] has first studied Petri net languages. Jantzen [Jan79] has also
studied languages of labeled, λ-free labeled and unlabeled Petri nets; the P-
type languages of [Jan87] are languages of firing sequences, P (N) = {w ∈ T ∗ |
m0

w⇒} (the notation will be introduced in Section 3); the T-type languages are
those ending in deadlocks: L-type languages are those ending in one of a set
of designated final states and G-type languages are those that end in a state
covering, i.e. including, a designated state; we will use a termination criterion
generalising this. Free-labeled means that the labeling function does not identify
any pair of distinct rules and is λ-free (i.e. does not assign the empty word λ); the
classes of arbitrarily labeled and arbitrarily but λ-free labeled languages differ
from their free-labeled counterparts and from each other in all four cases. Note

70

that Petri nets, which are injective DPO systems over multisets or labeled graphs
without edges, have a monotony property which the arbitrary labeled graph
transformation systems considered here lack, such that much more complicated
behaviour is seen here; indeed, the formalisms under consideration in this paper
are capable of performing arbitrary computations.

Going back to string grammars, derivation languages have also been stud-
ied by Monien [Mon77] for automata; all Szilárd languages of type 0 grammars

(N,Σ,P, S), Sz(G) = {σ ∈ P ∗|S σ⇒ w,w ∈ Σ∗} are context sensitive languages.
Höpner (better known as Jantzen) has studied the family H1(Sz) of homomor-
phic images of Szilárd languages [Hö75] under length-preserving homomorphisms
and found it to be endowed with more useful properties than the free-labeled
kind. See [Mäk98] for a bibliography of older work. Mäkinen has published a
number of articles on Szilárd languages of several kinds of grammars, and com-
plexity of such languages.

3 Basic Definitions

In the following, though we generally assume familiarity with the vocabulary of
graph theory, the basic definitions for double-pushout rewriting of graphs are
recalled. We would like to refer the reader to the following sources: [HMP01] for
several variants of DPO graph rewriting, one of which, called DPOi/i because
both matches and right-hand sides of rules must be injective, is precisely the one
investigated in this paper; [EPPH06] for the more general theory based on the
notion of an adhesive high-level replacement category but also for the special
cases graphs and labeled graphs, for the closely related notion of an adhesive
category, which the categories of finite graphs and finite labeled graphs we recall
here fit, [LS04]. Since the focus of this paper is on the concrete capabilities of
injective DPO rewriting over finite graphs and finite labeled graphs, we present
only definitions for finite (labeled) graphs and forego a more abstract foundation.

Definition 1. A finite directed graph with self-loops and multiple edges, called
graph in the sequel, is a tuple (V,E, s, t) of two finite sets V , E and two total
functions called source, target s, t : E → V .

Definition 2. A finite labeled graph is a tuple G = (V,E,L, s, t, lv, le), adding
to the data defining a graph a finite set of labels L and two functions lv : V → L
and le : E → L.

Definition 3. A morphism of (labeled) graphs is a pair of total functions f =
(fV , fE) that map nodes / edges, preserving the operations s, t, l, that is s′◦fE =
fV ◦ s, t′ ◦fE = fV ◦ t, whilst labels are left unchanged: l′e ◦fE = le, l

′
v ◦fV = lv.

Categories FinGraph, LFinGraph are obtained under component-wise com-
position of the morphisms. Graphs and labeled graphs can also be seen as two-
and three-sorted algebras [EPPH06], which is useful when generalising the theory
to other graph-like objects such as hypergraphs. Monomorphisms m : X ↪→ Y ,

71

m ◦ i = m ◦ j ⇒ i = j are of special importance in the theory of DPO graph
rewriting. In FinGraph and LFinGraph, these are exactly the morphisms which
are injective mappings component-wise.

Definition 4. An initialised DPOi/i system S over (L)FinGraph is a pair
({Ut}t∈T , s0) of a set of rules Ut indexed on a finite alphabet T of rule names.
s0 is the start graph and the rules Ut are pairs of monomorphisms lt : Kt ↪→ Lt,
rt : Kt ↪→ Rt from a common interface graph Kt to a left-hand-side graph Lt
and a right-hand-side graph Rt.

We are going to need a name for the set of possible states of a system. In
principle, the set of isomorphism classes of finite graphs, respectively of finite
graphs labeled over some alphabet including all labels to be used, is the right
notion. We will let G denote one of these according to the context. Whenever a
state is involved in a construction (notably Definition 6), a representant of the
isomorphism class is meant.

The definition of a direct derivation is important, because it defines the
dynamics of the systems. In the nomenclature of [HMP01], we are here in the
process of defining DPOi/i, double pushout rewriting with injective matches and
injective (right-hand side morphisms of) rules.

The interface graph Kt of a rule is a subgraph of both the left hand side and
the right hand side. The mechanism of replacement of the pattern Lt with the
pattern Rt when applying a rule is as follows. A pushout, abstractly, is defined
by a universal construction; we will just take a concrete construction describing
a pushout in (L)FinGraph as a definition.

Definition 5. Given morphisms C
c← A

b→ B, let D be the graph having as
nodes VD = (c(VA)] b(VA))/{(c(v), b(v)) | v ∈ VA}: the quotient of the disjoint
union of the images of A via b resp. c by the least equivalence relation identifying
those nodes that are the images of a common node of A. Edges likewise. The

pushout of C
c← A

b→ B is C
c′→ D

b′← B: D together with the compositions of
the injections with the quotient morphism from the construction of D.

Clearly, the pushout always exists in (L)FinGraph. Moreover,monomorphisms
push out to monomorphisms in any adhesive category. In the pushout, B and C
are then simply glued together along the common subgraph A.

Definition 6. If there is a monomorphism, called the match, Lt
g
↪→ G such that

Kt
lt
↪→ Lt

g
↪→ G can be complemented by a graph D and morphisms Kt

d
↪→ D

l′
↪→ G

in a way that D
l′
↪→ G

g←↩ Lt is the pushout over D
d←↩ Kt

lt
↪→ Lt,

let D
r′
↪→ H

g′←↩ Rt be the pushout over D
d←↩ Kt

rt
↪→ Rt.

We write G
t,g⇒ H or G

t⇒ H.

As a double pushout diagram:

72

Lt Kt_?lt

oo � � r // Rt

G
��

g

_�

D_?
l′

oo � � r′ //
��

d

_�

H
��

h

_�

For graphs, concretely this means that nodes and edges in G are of three
kinds each: a node/edge x is either
(a) The image of a node/edge in D, but not the image of a node/edge in Lt
(b) The image of a node/edge in Lt and the image of a node/edge in D
(c) The image of a node/edge in Lt, but not the image of a node/edge in D

The nodes and edges of (a) are not touched by the rewriting step, the nodes
and edges of (b) are preserved and the nodes and edges of (c) are deleted.

The applicability of a rule given a match then comes down to the satisfaction
of a dangling edge condition, which is checked on the (c) nodes and the incident
edges: a node which is attached to an edge that is not deleted may not be deleted.
This implies that the in- and outdegrees of any deleted node are always exactly
those indicated in the rule. For labeled graphs, the labels must also match.

We define derivation sequences and a derivation relation between objects.

Definition 7. Notation. We write

G
w⇒∗ G′ whenever w is the empty string λ and G = G′

or w = tv, ∃G′′ ∈ G : G
t,g⇒ G′′ ∧G′′ v⇒∗ G′.

G⇒∗ G′ whenever ∃w ∈ T ∗ : G
w⇒∗ G′

G
w⇒∗ whenever ∃G ∈ G : G

w⇒∗ G′
G⇒∗ whenever ∃w ∈ T ∗ ∃G ∈ G : G

w⇒∗ G′
G 6⇒ whenever ¬∃t ∈ T : G

t⇒
We will occasionally subscript the name of the system or omit the asterisk.
Before we go on, we fix some conventions for Graphical Representation: The

rule drawings in the examples are to be read as follows: each node or edge in the
middle graph (the rule interface) is mapped to the one in the corresponding place
on the left hand resp. right hand graph. Labels are encoded as node shadings or
strings near the labeled nodes or edges. Sometimes edge directions are omitted
in the graphical representation.

3.1 Derivation Languages

Graph transformation systems can be used as generators of languages. The lan-
guages considered here are not sets of graphs generated by a graph grammar, but
instead the sets of possible sequences of rule applications, which are a revealing
aspect of the dynamics of a system. A notion of termination will nevertheless be
introduced, and it is one which is internal to the graph transformation system
itself, in that termination is recognised by an additional transition rule which
disables itself and all other rules.

73

We start out with the prefix-closed derivation language without termination.
If T is the alphabet and s0 is the start graph of the system S, see Definition 4.

Definition 8. Let S = ({Ut}t∈T , s0) be an initialised DPOi/i system over

FinGraph. Then LD(S) := {w ∈ T ∗ | s0 w⇒S} is called the prefix-closed deriva-
tion language without termination of S. We call LD the class of all languages
L such that L = LD(U, s0) for some DPOi/i system (U, s0) over FinGraph.

The $-terminating derivation languages are defined as follows, $ ∈ T being a
special rule label that is barred from occurring in words of that language.

Definition 9. Let S = ({Ut}t∈T , s0) be an initialised DPOi/i system over

FinGraph. Then L$(S) := {w ∈ (T \ {$})∗ | s0 w$⇒S} is called the $-terminating
derivation language of S. L$ is the class of all languages L such that L =
L$(U, s0) for some DPOi/i system (U, s0) over FinGraph.

We could also define L′$, with the condition that $ must disable all other rules
and itself. But any L ∈ L′$ can be seen to be in L$ by modifying the system such
that L$ = L′$] {v$} and s0 = s′0] {v$} and that special node v$ is present in
the interface Kt for all other transitions, the node v$ always bearing the unique
label $. Even concurrent executions are preserved by this construction, since side
conditions do not influence the concurrent applicability of rules, from the theory
of parallel independent rules.

For every initialised DPOi/i transformation system over finite labeled graphs
a behaviorally equivalent one exists over unlabeled graphs, even preserving con-
currency. One possible translation represents the differently labeled nodes and
edges (node and edge labels disjoint) as nodes to which m loops and n auxiliary
nodes are attached, with numbers n = 1 + |L| −m depending only on the label
so as to create incomparable subobjects for distinctly labeled nodes and edges.
The principle is illustrated in Figure 1, where m is 2 for a, 3 for b and 1 for label
c, and there are 3 labels in total.

a c
b

a

Fig. 1: An unlabeled graph representing a labeled graph.

We think it is safe now to let the statement of equivalence of labeled and
unlabeled systems stand without a proof – an initialised system only uses a fixed
set of labels, and states are only considered up to isomorphism. The reverse
direction is obvious, as unlabeled graphs can trivially be seen as labeled ones.

74

4 Results

Unlike free-labeled Petri net languages and Szilárd languages, the derivation
languages of DPO systems over finite graphs do contain all regular languages
and possess basic closure properties already without having to relabel any rules.
Only the very simple case of closure under intersection is in this article, which is
needed to show an undecidability result at the end of Subsection 4.2. For several
other closure properties, see [Fli12].

4.1 Languages in LD and L$

From the definitions, it is trivial that for any system S, the prefixes of terminating
derivations are in LD(S).

Proposition 1. pref(L$(S)) ⊆ LD(S).

Proof. Immediate. �

The relationship between the classes is also easy to see. It is worth noting (see
above) that systems over the ordinary finite graphs have the same expressivity
as systems over the labeled graphs; therefore we will work with less tedious
constructions for labeled graphs.

Proposition 2. LD (L$.

Proof. Just add a termination rule which is enabled in the beginning and con-
sumes a special precondition, which cannot be consumed by the other rules. One
the other hand, there are non-prefix closed languages in L$. �

We give some examples of such languages. The system of Figure 2 generates
a2

n

. It is quite easy to see that a1 and a2 are executed deterministically and
activate $; when the marker has reached the loop, it can travel around the loop.
The portion of the loop still ahead of the marker is not modified by the rule,
while each edge left behind is doubled. Therefore, after reaching an end state
again in n hops, the loop is now twice as long, a has already been executed 2n
times in total and must be executed another 2n times to reach the next end state.
The system in Figure 3 deterministically generates anbncn by letting a build a
chain of edges as long as the blue and red markers are together. Then repeated
applications of b eventually bring the blue marker back home and double every
one of the n edges in the chain. Then the yellow marker can be moved by c, and
when that is done, the red and the yellow marker can be removed for termination.
That is also possible after zero steps, disabling further applications immediately.

Results like the undecidability of termination of DPO graph rewriting sys-
tems (without a fixed start graph, [Plu98]) are already well known. Indeed, DPO
systems over graphs are very powerful, enough so to simulate the workings of a
Turing machine.

After simulating a successful calculation with silent rules, can read the word
off the input tape using the non-silent rules, so the images of the derivation

75

a:

s0: $:
* * * *

* * *la ra

l$ r$

Fig. 2: A system generating L$(S) = {a2n | n ∈ N}

s0:

a:

b: $:

c:
1 2 3

1 2 31 2 1 2

1 1 1

3 3

3 2

Fig. 3: A system generating L$(S) = {anbncn | n ∈ N}

languages L$ under arbitrary, also deleting homomorphisms are indeed all re-
cursively enumerable languages. If H denotes closure under arbitrary homomor-
phisms and RE the class of recursively enumerable languages, Sz the Szilárd
languages and NSPACE(f(n)) the class of all languages acceptable by a non-
deterministic Turing machine in space O(f(n)),

Proposition 3. H(L$) = RE, H(LD) = pref(RE).

Proof. By constructing a DPO graph transformation system from a Turing ma-
chine with one input tape and one work tape, with one λ-labeled rule for each
element of the transition relation, one λ-labeled rule that extends the work tape
as needed, and finally a set of rules labeled over T , which read the input once
(use a marker initially attached to the first input cell, and the termination rule
to read the end-of-tape symbol) if an accepting state has been reached. �

Proposition 4. Sz (L$.

Proof. The inclusion of the Szilárd languages of arbitrary Chomsky grammars
in L$, which are the sequences of free-labeled rule applications can be seen by
encoding each word composed of terminals and nonterminals as a linearly shaped
graph with two dummy nodes at the ends, and each production as a rewriting
rule. Termination, that is derivation of a terminal word, can be recognised in-
ternally by always attaching all non-terminals to a single special node labeled
$ which is preserved by all production rules, and putting an isolated $ labeled
node in L$ but not in K$. Szilárd languages never contain the empty word since
derivation always starts at the non-terminal string S. �

Proposition 5. L$ ⊆ NSPACE(n log n).

76

Proof. Every derivation of length n can clearly be simulated in O(n log n) space
by a nondeterministic Turing machine, because every graph can be encoded by
a string of length O((v + e) log v) as an adjacency list; each configuration of
the system reachable in n steps can only have c1 · n nodes and c2 · n edges. The
subgraph matching can be done by (nondeterministically) marking off edges and
nodes as images of the elements in Lt for each transition; doing this and checking
the dangling edge condition can be performed with linear space requirement. �

We show that all context-free languages CF are L$ languages by demonstrat-
ing that the runs of a real-time push-down automaton, that is without any λ
transitions, can be simulated by derivations in a graph transformation system in
such a way that each direct derivation can simulate all transitions of the PDA
that read the same input symbol, also preserving determinism. Because only
injective matches are allowed, some extra care is needed for encoding self-loops
of the automaton. They must be realised with symmetries.

We also provide a visual example of the PDA simulation construction. Figure
4 shows a push-down automaton that accepts the language {anbn | n ∈ N} with
end states q0 and q3. Figure 5 shows an encoding of the stack as a graph. Figures
6, 7, 8, 9, 10 sketch the corresponding DPO system.

q0 q1

a,⊥|⊥ b,A|ε

a,A|AA b,A|ε

b,⊥|ε

a,⊥|⊥A

b,⊥|ε

q2 q3

Fig. 4: An λ-free push-down automaton with end states q0, q3 and start state q0 for the
language {anbn | n ∈ N}

For the following theorem we present the construction of the equivalent graph
transformation system and argue its validity verbally and graphically, but with-
out formal rigour.

Theorem 1. CF ⊆ L$, and from a push-down automaton one obtains a DPOi/i

graph transformation system S having the same language as derivation language.
If the automaton is deterministic, so is S.

Proof. Let P = (Q,Σ, Γ, δ, q0, Qf) be a PDA without λ transitions accepting
the language L. Q is the finite set of states of the finite control, Σ and Γ are
finite alphabets, δ ⊆ Q × Σ × Γ × Γ ∗ × Q is the transition relation, q0 q0 ∈ Q
is the start state and Qf ⊆ Q is the set of end states. A configuration of P is
a triple (q, γ, w) ∈ Q× Γ ∗ ×Σ∗ representing the finite state, the stack and the
remaining input. (q, γA, aw) `P (q′, γg, w) iff (q, a,A, g, q′) ∈ δ. g is always a
string of either zero, or one, or two symbols.

77

Let s0 be the initial state of the graph transformation system, as shown in
the example (Figures 6 and 7). It is composed of a representation of the initial
stack, the finite control and assorted other nodes and edges needed to provide
the desired behaviour.

– The symbol nodes. One needs one specially labeled node for each symbol.
We cannot match nodes labeled A, A′ with A 6= A′ generically when working
with labeled graphs. So for each node labeled with a symbol A ∈ Γ there is
a unique node pointing to it. We will call that the symbol node of A.

– The stack. Our representation of the stack will have a backbone, whose nodes
alternate between being connected to a cell node (which itself points to the
symbol node) and potentially to a top-of-stack marker.

cell

A

cell

B

cell

C

cell

Fig. 5: Representation of the stack ⊥ ABC

– The finite control:
• The state nodes. One node (vq, 0) is needed for each state q ∈ Q, and

another node (vq, 1) if q has a self-loop.
• The transition nodes. One node (vd, 0) or two nodes (vd, 0), (vd, 1) for

each element (q, a, g, g′, q′) = d ∈ δ, attached to vq and vq′ in the manner
indicated in the picture: in case one of q and q′ has a self-loop, two nodes
are needed; in case q = q′, only one is created but it is attached with
arrows going both ways.

• A node vmarker labeled marker attached to vq0 initially and to the current
state during the simulation, and one node each, labeled end, attached to
vq where q ∈ Qf .

– For each transition node, the following supplementary elements encode the
instructions:
• one edge labeled read, one edge labeled top of stack, and one edge labeled

write indicate the effect of the rule, as in Figure 8.
• The portion to be written on the stack is attached to a chain of virtual

backbone nodes. There are always five of them, since the mechanism has
to be the same whether zero, one or two symbols are written.

• The top of stack node is always attached to either the first, the third
or the fifth cell node on the virtual backbone. The top of stack edge of
the transition node indicates, which one. This alternating layout is also
shared by the representation of the actual stack.

78

• Every other backbone node (virtual of not) points to a cell node serving
as a pointer to a symbol node.

A transition of the PDA is effected by searching a match that would map
the node marked with a number 1 in Figure 8, to the transition’s node (vd, i),
and performing the DPO derivation.

Define the relation A ⊆ (Q× Γ ∗)×G such that ((qi, γ), G) ∈ A iff the graph
Gmarker consisting of a node v1 labeled ∗ and a node v2 labeled q is source of
subobject i of G in such a way that i(v2) is the node (qi, n) for some n ∈ N,
and a basic bare-bones representation of the stack γ, as and exemplified in 5, is
subobject of G in essentially one way, and no other possible stack representation
is a subobject of G.

It remains to be proven that the construction provides that (c, s) ∈ A ∧
(aw, c)

a

` (w, c′)⇒ ∃s′, g : s
a,g⇒ s′∧ (c′, s′) ∈ A: for the induction over the length

of w (there are no λ steps), one mainly needs to show that this simulation
property is preserved over one step.

As induction assumption, we posit that the state q a stack γAi is represented
in the DPO system’s state s. The node pointing to a cell with the symbol Ai ∈ Γ
above the read edge is part of the one legitimate stack representation of γAi,
ending in >, since the old connection to > is broken when applying the rule.
The induction basis stands: by construction, the assumption is true in s0, where
the stack ⊥ is represented.

The induction step goes like this: after extending the stack in the manner
of rule a (Figure 8), there are three cases to be considered, depending on the
number of symbols to be put back on the stack after removing the old top cell.

But they are all very similar. If nothing is written back, that is encoded in a
part of the state graph which is never changed, and where the top of stack edge
points to the node linked to the one right of the upmost virtual backbone node
(number 2 in Figure 8). This gets linked to the predecessor, in the real backbone,
of the node pointing to the cell that was read from the stack. If one symbol is
written back, the top of stack edge of the transition points to the node linked to
the one right of the third virtual backbone node, also leading to one valid stack
representation being subobject of the new state graph, and if two symbols are
written back, then all of the new backbone nodes actually have a use because
the fifth will bear the top-of-stack marker.

Please note there are state invariants making the analysis easier: there is
always only one connection to the single > node in the graph. The > is always
attached to a node which has only one path to the bottom of the actual stack.
Also note that whenever only one transition is possible for the automaton, only
one match can be found. �

This is in contrast to the λ-free labeled languages of Petri nets, by an ar-
gument reported in [Hac76] and also used there to show that not even λ-free
labeled inhibitor nets generate all context-free languages.

Proposition 6. CF (L$.

79

Proof. To see that the inclusion is proper, take the example {a2n |n ∈ N} ∈ L$.
�

The following figures show part of the initial state s0 of the graph transfor-
mation system corresponding to Figure 4. The part represented in Figure 6 is
the finite control of the automaton. All state transitions have three arcs, labeled
read, write and top of stack. We have drawn them for only one of the transitions.

a

*

write
read

q0

q1

tos

a b b b
¢

q2

q3

b

¢
a

Fig. 6: The part of s0 encoding the finite control. The qi are not node labels, but serve
to explain the encoding.

⊥

⊤

q1

a

q1

writeread

tos
A

cell cell

cell

Fig. 7: The part of s0 encoding the stack, and the instructions for one of the state
transitions. The part to the left of the figure, which encodes the stack with only one ⊥
symbol in it, exists only once in the whole start state s0. The part to the right, with
the “instructions”, exists once for every transition in δ.

There are of course as many rules as there are input symbols, plus the end
rule. The end rule removes the current state marker, but only if the simulation
is currently in an end state. Termination with empty stack, without end state
can also be checked.

DPOi/i systems over finite graphs are really much more general than push
down automata, and generalisations immediately suggest themselves. For exam-
ple, it is possible to build up a branching stack, as in the “concurrent finite stack

80

a

*

write
read

top of stack

cell

cell

cell

(match the current
top of the stack)

1

2

m
a
tc

h
 t

o
p
 3

 b
a
ck

b
o
n
e
 n

o
d
e
s

v
ir

tu
a
l
b
a
ck

b
o
n
e
 n

o
d
e
s

a

writeread

top of stack

cell

cell

cell

v
ir

tu
a
l
b
a
ck

b
o
n
e
 n

o
d
e
s

o
ld

 t
o
p
 b

a
ck

b
o
n
e
 n

o
d
e
s

d
is

co
n
n
e
ct

e
d

Fig. 8: The rule for a labeled transitions. Left hand side La, interface Ka

a

*

write
read

top of stack

cell

cell

cell

n
e
w

 b
a
ck

b
o
n
e
 n

o
d
e
s

o
ld

 t
o
p
 b

a
ck

b
o
n
e
 n

o
d
e
s

d
is

co
n
n
e
ct

e
d

Fig. 9: The rule for a labeled transitions. Right hand side Ra

* ¢ ¢ ¢$:
l$ r$

Fig. 10: The end rule

automata” (CFSA) of [BBH11], but it is not clear whether all CFSA languages
can be obtained here. That would be the case if λ transitions were avoidable in
CFSA. It is also possible to encode various schemes of multiple stacks, but again
no λ transitions can be simulated directly.

81

4.2 Consequences

We immediately obtain decidability results. While the word problem is obviously
decidable, many other questions are not decidable for LD and L$, because the
corresponding questions for context free languages, given as grammars or au-
tomata, can be reduced to questions for derivation languages of DPO systems
over finite graphs. Now,

Lemma 1. LD is closed under intersection, so is L$

Proof. Given two systems S1 and S2 over unlabeled graphs with rules indexed
over the same alphabet, we map S1 and S2 to labeled graph transformation
systems for graphs labeled over disjoint alphabets. Then the rules of both systems
are composed via disjoint unions for graphs and morphisms. The resulting system
is initialised with the disjoint union of the start graphs. One verifies that this
system generates the intersection of the languages of S1 and S2. �

Proposition 7. It is not decidable in general whether L$(S) = T ∗. The equiva-
lence and inclusion problems are also undecidable. Regularity is also undecidable.
The emptiness problem L$(S) = ∅ is not decidable.

Proof. Because of Proposition 6, questions undecidable [Kud04] for context free
languages (given as PDA or equivalently as context free grammars) are not
decidable for L$ languages. Because of Lemma 1 furthermore there is an effective
way of constructing a system generating the intersection, and it is undecidable
whether the intersection of two context free languages is empty. �

5 Conclusion and Outlook

We have examined the classes defined here for some closure properties. The
findings will appear in a separate paper.

The question whether L$ is equal to the context sensitive languages CS had
to remain open. We have not found anything that would preclude it, but also
not yet been able to relate the two.

Only sequential languages were considered, concurrency issues were entirely
ignored in the making of this paper, since they are less relevant when compar-
ing to other classes of sequential languages. That said, double pushout graph
rewriting is geared towards describing concurrent rule applications too, so step
languages should also be studied.

We hope the investigation of derivation languages will continue to prove a
fruitful subject, as one can study hierarchies of such languages by restricting the
systems appropriately.

Also, we are currently investigating reachability graphs of the same systems,
which can also be defined in analogy to the Petri net case, and generalising some
aims of net synthesis – though the questions can not necessarily be addressed
by the same means as net synthesis.

82

References

[Bac11] Jörg P. Bachmann, Characterization of Petri net languages, Proceedings of
the international workshop CS&P 2011 September 28–30, Pu ltusk, Poland
(2011), 17–28.

[BBH11] Martin Berglund, Henrik Björklund, and Johanna Högberg, Recognizing
shuffle languages, LNCS (2011), 142–154.

[CE95] Bruno Courcelle and Joost Engelfriet, A logical characterization of the sets
of hypergraphs defined by hyperedge replacement grammars, Mathematical
Systems Theory 28 (1995), no. 6, 515–552.

[CRM77] Stefano Crespi-Reghizzi and Dino Mandrioli, Petri nets and Szilard lan-
guages, Information and Control 33 (1977), no. 2, 177–192.

[Dar04] Philippe Darondeau, Unbounded Petri net synthesis, Lectures on Concur-
rency and Petri Nets (2004), 1–20.

[EPPH06] Hartmut Ehrig, Julia Padberg, Ulrike Prange, and Annegret Habel, Adhe-
sive high-level replacement systems: A new categorical framework for graph
transformation, Fundamenta Informaticae 74 (2006), no. 1, 1–29.

[Ev97] Joost Engelfriet and Vincent van Oostrom, Logical description of context-
free graph languages, Journal of Computer and System Sciences 55 (1997),
no. 3, 489–503.

[Fli12] Nils Erik Flick, On derivation languages of DPO graph transformation sys-
tems. part 2: Closure properties, 2012, Accepted for GCM 2012, Bremen.

[Hab92] Annegret Habel, Hyperedge replacement: grammars and languages, vol. 643,
Springer, 1992.

[Hac76] Michel Hack, Petri net languages, Tech. Report 159, Massachusetts Institute
of Technology, 1976.

[HMP01] Annegret Habel, Jürgen Müller, and Detlef Plump, Double-pushout graph
transformation revisited, Mathematical Structures in Computer Science 11
(2001), no. 05, 637–688.

[Hö75] Matthias Höpner, Eine Charakterisierung der Szilardsprachen und ihre Ver-
wendung als Steuersprachen, Gl-4.Jahrestagung (D. Siefkes, ed.), LNCS,
vol. 26, Springer Berlin / Heidelberg, 1975, pp. 113–121.

[Jan79] Matthias Jantzen, On the hierarchy of Petri net languages, RAIRO: Theo-
retical informatics 13 (1979), 19.

[Jan87] , Language theory of Petri nets, Petri Nets: Central Models and
Their Properties (1987), 397–412.

[KKHK06] Hans-Jörg Kreowski, Renate Klempien-Hinrichs, and Sabine Kuske, Some
essentials of graph transformation, Recent Advances in Formal Languages
and Applications 25 (2006), 229–254.

[Kre79] Hans-Jörg Kreowski, A pumping lemma for context-free graph languages,
Graph-Grammars and Their Application to Computer Science and Biology,
Springer, 1979, pp. 270–283.

[Kud04] Manfred Kudlek, Context-free languages, Studies in Fuzziness and Soft
Computing 148 (2004), 97–116.

[LS04] Stephen Lack and Pawe l Sobociński, Adhesive categories, Foundations of
software science and computation structures, Springer, 2004, pp. 273–288.

[Mäk98] Erkki Mäkinen, A bibliography on Szilard languages.
[Mon77] Burkhard Monien, About the derivation languages of grammars and ma-

chines, Automata, Languages and Programming (1977), 337–351.
[Plu98] Detlef Plump, Termination of graph rewriting is undecidable, Fundamenta

Informaticae 33 (1998), no. 2, 201–209.

83

On Derivation Languages of DPO Graph
Transformation Systems. Part 2:

Closure Properties

Nils Erik Flick

Fachbereich Informatik, MIN-Fakultät, Universität Hamburg, DE
email: flick AT informatik.uni-hamburg.de

Abstract. We investigate sequential derivation languages associated
with injective double-pushout rewriting systems over finite graphs, as
a loose generalisation of the corresponding notions of free-labeled Petri
net languages. Both the class of the prefix-closed languages of rule appli-
cation sequences without termination rules and a class of languages with
rule-based termination are found to possess several interesting closure
properties, whose proofs are sketched in this article.

1 Introduction

Double pushout graph transformation systems, introduced [EPS73] as an alge-
braic approach to graph rewriting has been extended beyond graphs. In the
present paper we will concentrate exclusively on rule application sequences that
occur in the rewriting of finite graphs. This means we study string languages
that describe the possible rule applications and not sets of graphs generated by
a graph grammar. These families of languages possess some closure properties
which are shown in this paper. They differ from the languages of Petri nets in
that unlabeled variants are equivalent to λ-free labeled variants, and the images
under arbitrary homomorphisms are all recursively enumerable languages.

A motivation for their study has been given in [Fli12]: since graph trans-
formation systems can express diverse other formalisms, they can be used as a
unifying tool. Also, knowledge about the capabilities of the formalism is useful
when using it in designing systems. The paper is structured as follows:

Section 3 contains the basic definitions for double pushout transformation of
graphs, on the concrete level needed for the exposition. Section 2 gives literature
references to existing publications dealing with language theory of special graph
transformation systems, namely Petri nets, and related fields. Section 4 contains
the results of this paper, selected closure properties of derivation languages ob-
tained by applying operations to graph transformation systems, providing proof
sketches. Section 5 concludes the presentation with an outlook.

2 Related Work

In this section, we list some work of note. There is not much to be found on
languages of more general systems, most is on Petri nets. A Petri net, more

84

precisely a P/T net, is an initialised rewriting system over multisets. It can be
viewed as a comparatively simple injective DPO system [KKHK06] [Cor95], with
very special properties. Rule activation is monotonous with respect to the partial
order on states, states and transition effects are described as integer vectors and
the effect of a rule or transition is calculated simply by vector addition, and
the special properties allow the synthesis of nets from languages [Dar98,Dar04].
Petri nets have been related by their language theory to several other formalisms
such as string grammars, and extensions of regular expressions [CRM77,Gis81].

Several authors have studied the sets of firing sequences or labeled firing
sequences generated by Petri nets, with termination recognised by the reaching
of a final marking. One of the first such studies was by Hack in 1976 [Hac76].
Hack’s report already contains, and compiles, for example the work of Peterson
[Pet76], many interesting theorems, including closure and non-closure properties.

Jantzen [Jan79] has also studied languages of labeled, λ-free labeled and
unlabeled Petri nets; the P-type languages of [Jan87] are languages of firing

sequences, i.e. P (N) = {w ∈ T ∗ | m0
w⇒}(the notation will be introduced in Sec-

tion 3); the T-type languages are those ending in deadlocks. L-type languages are
those ending in one of a finite set of designated final states and G-type languages
are those that end in a state covering, i.e. including, a designated state; we will
use a termination criterion generalising this. Free-labeled means that the labeling
function does not identify any pair of distinct rules by assigning them the same
label, and no label is λ (empty); the classes of arbitrarily labeled and arbitrar-
ily, but λ-free labeled languages differ from their free-labeled counterparts and
from each other in all four cases. The range of possible termination conditions
was extended by Gaubert and Giua [GG99], who considered semilinear and not
just finite sets of end markings. Starke [Sta78] investigated free terminal Petri
net languages with a finite set of terminal markings and even found a charac-
terisation by closure properties. Petri nets also offer the possibility of definition
concurrent activation of rules: step languages of Petri nets under various firing
policies were studied in [JZ08]. See also our article [Fli12] for more sources, also
for references to the related notion of Szilárd languages.

3 Basic Definitions

In this section, we recall the basic definitions for double pushout rewriting of
graphs. First of all, we must define graphs, which are the objects being rewritten.

Definition 1. A finite directed graph with self-loops and multiple edges, called
graph in the sequel, is a tuple (V,E, s, t) of two finite sets V , E and two total
functions called source, target s, t : E → V .

Definition 2. A finite labeled graph is a tuple G = (V,E,L, s, t, lv, le), adding
to the data defining a finite graph a set of labels L, which can always be assumed
finite, and two functions lv : V → L and le : E → L.

If in the sequel, we leave nodes and edges not explicitly labeled, these all
have the same label, which is none of those explicitly given.

85

The relationships between graphs, which play an important role in rewriting
since it is necessary to express in what precise way one graph is a subgraph of
another, are expressed in terms of structure preserving mappings.

Definition 3. A morphism of (labeled) graphs is a pair of total functions f =
(fV , fE) that map nodes and edges respectively, whilst labels are left unchanged,
preserving the operations s, t, l, that is s′◦fE = fV ◦s, t′◦fE = fV ◦t, l′e◦fE = le,
l′v ◦ fV = lv.

Finite graphs and labeled finite graphs together with these morphisms form
categories FinGraph and LFinGraph. The whole theory of graph rewriting
according to the approach presented below was generalised to other kinds of
objects and morphisms, but we deal only with graphs here. Monomorphisms
m : X ↪→ Y , m ◦ i = m ◦ j ⇒ i = j are especially important. In our categories,
these are exactly the morphisms which are injective mappings component-wise,
i.e. do not identify the images of two nodes or edges.

We are going to need a name for the set of possible states of a system. The
set of isomorphism classes of finite graphs or, following the context, finite graphs
labeled over some alphabet including all labels to be used will be denoted by G.
Whenever we speak of graphs, it is understood that these graphs are labeled;
every labeled DPO system can be translated to an unlabeled one which is fully
equivalent even if concurrent behaviour is considered [Fli12], allowing us to use
the results in the unlabeled case.

Double pushout graph rewriting comes in several variants [HMP01]. In the
nomenclature of [HMP01], we are interested inDPOi/i systems. That is, matches
and left-hand sides of rules are injective, in fact every transformation rule t is
specified using injective morphisms lt, rt from a common interface graph Kt to
the left-hand side Lt and right-hand side Rt graphs.

Definition 4. A rule Lt
lt←↩ Kt

rt
↪→ Rt is a pair of monomorphisms with common

source, lt : Kt ↪→ Lt, rt : Kt ↪→ Rt.

The interface graph Kt is a subgraph of both the left hand side and the right
hand side. The mechanism of replacement of the pattern Lt with the pattern
Rt when applying a rule is explained below, in the concrete case of labeled or
unlabeled graphs. First, we define the systems that are the object of our study.

Definition 5. An initialised DPOi/i system S, or system for short, is a pair
({Ut}t∈T , s0) of a set of rules Ut (Definition 4) indexed on a finite alphabet T
of rule labels. s0 ∈ G is the start graph.

Next, we move on to the dynamics of the systems. The definition of the actual
transformation steps, customarily called direct derivations, is recalled.

Definition 6. Given morphisms C
c← A

b→ B, let D be the graph having as
nodes VD = (c(VA)] b(VA))/{(c(v), b(v)) | v ∈ VA}: the quotient of the disjoint
union of the images of A via b resp. c by the least equivalence relation identifying

86

those nodes that are the images of a common node of A. Edges likewise. The

pushout of C
c← A

b→ B is C
c′→ D

b′← B: D together with the compositions of
the injections with the quotient morphism from the construction of D.

Clearly, the pushout always exists in (L)FinGraph. Moreover, monomor-
phisms push out to monomorphisms in any adhesive category. In the pushout,
B and C are then simply glued together along the common subgraph A.

Definition 7. If there is a monomorphism, called the match, Lt
g
↪→ G such that

Kt
lt
↪→ Lt

g
↪→ G can be complemented by a graph D and morphisms Kt

d
↪→ D

l′
↪→ G

in a way that D
l′
↪→ G

g←↩ Lt is the pushout over D
d←↩ Kt

lt
↪→ Lt,

let D
r′
↪→ H

g′←↩ Rt be the pushout over D
d←↩ Kt

rt
↪→ Rt.

We write G
t,g⇒ H or G

t⇒ H.

Remark 1. For graphs, concretely this means that nodes and edges in G are of
three kinds each: a node/edge x is either (a) The image of a node/edge in D,
but not the image of a node/edge in Lt
(b) The image of a node/edge in Lt and the image of a node/edge in D
(c) The image of a node/edge in Lt, but not the image of a node/edge in D

The nodes and edges of (a) are left unchanged by the rewriting step, the
nodes and edges of (b) are preserved and the nodes and edges of (c) are deleted.
The applicability of a rule given a match then comes down to the satisfaction of
a dangling edge condition, which is checked on the (c) nodes and the incident
edges: a node which is attached to an edge that is not deleted may not be deleted.
This implies that the in- and out-degrees of any deleted node are always exactly
those indicated in the rule. For labeled graphs, the labels must also match.

Definition 8. Notation. We write

G
w⇒∗ G′ whenever w is the empty string λ and G = G′

or w = tv, ∃G′′ ∈ G : G
t,g⇒ G′′ ∧G′′ v⇒∗ G′.

G⇒∗ G′ whenever ∃w ∈ T ∗ : G
w⇒∗ G′

G
w⇒∗ whenever ∃G ∈ G : G

w⇒∗ G′
G⇒∗ whenever ∃w ∈ T ∗ ∃G ∈ G : G

w⇒∗ G′
G 6⇒ whenever ¬∃t ∈ T : G

t⇒

To each system we associate the set lab(S) of labels of nodes or edges occur-
ring in its start state and rules. In describing the derivation languages it would
always be sufficient to consider only graphs labeled over lab(S), as no other la-
bels stand to be introduced. Even when varying the start graphs, all labels that
do not occur in the rules look the same as far as the possible rule applications
are concerned. When describing the reachable states, the assignment of the other
labels can change the number of non-isomorphic reachable states, though.

87

We fix some conventions for the graphical representation of graphs and di-
agrams: nodes are drawn as little disks whose shading and inscriptions signify
different labels. Continuous, dotted or dashed lines represent edges; the different
kinds of lines, and inscriptions, stand for different labels. An arrow tip indicates
the direction of and edge. Undirected edges can be read as pairs of opposite
edges bearing the same label – sometimes we omitted the direction.

Graphs are surrounded with rounded boxes. In diagrams with graphs and
morphisms, morphisms are usually drawn as fat arrows linking the rounded
boxes. Every element (node, edge) is understood to be mapped to the element
in the corresponding place. That convention is also valid for the named subgraphs
which appear in little boxes.

3.1 Languages

In this subsection, we define derivation languages, a certain kind of terminal
derivation languages and deadlock languages of graph transformation systems.
The derivation languages (without termination criterion), which are analogous
to Petri net firing sequence sets, are the sets of all possible sequences of rule
applications. It is immediate from the definition that they are prefix-closed. If
S = ({Ut}t∈T , s0) is an initialised system in the sense of Definition 5,

Definition 9. LD(S) = {w ∈ T ∗ | s0 w⇒S}

All sequences ending in a state where a special rule labeled $, that disables
all further rule applications, is activated, constitute what we call the terminal
language or $-language.

Definition 10. L$(S) = {w ∈ (T \{$})∗ | ∃s′ ∈ G : s0
w⇒S s′∧s′ $⇒S} or more

succinctly {w ∈ (T \ {$})∗ | s0 w$⇒S}

LD and L$ are the classes of all such languages. These are the two classes
of languages we will be most concerned with in the present text. One can also
define the deadlock language of the system S,

Definition 11. Lδ(S) = {w ∈ T ∗ | ∃s′ ∈ G : s0
w⇒S s′ ∧ s′ 6⇒S}

as the set of all sequences ending in a state where no rule applies anymore.
Note that deadlock languages are a little awkward by definition in the handling of
the empty word since if λ 6= w ∈ Lδ(S), λ 6∈ Lδ(S). Similar issues were remarked
for Petri net languages and other definitions of language classes [Hac76].

Step languages can be defined as well by stipulating that a multiset of rules
α ∈ T⊕ is applicable iff the rules have parallel independent [HMP01,KKHK06]
applications, and updating the definition of⇒S accordingly. Several distinct step
firing policies make sense [JZ08], and this paper mainly deals with sequential lan-
guages. We will nevertheless sometimes discuss conditions for the constructions
to be valid for step languages as well. The simplest case of a parallel rule applica-
tion is the application of the composition of the rules by disjoint union, without

88

identifying any common parts in the interface graphs, and one can keep this
in mind when reasoning about the constructions, but one will need the actual
definition of a parallel independent set of rules when checking whether some of
the rules built in the constructions can be applied concurrently.

4 Closure Properties

Having defined several types of languages, we can look for closure properties.
Even in case L$ does turn out to be some well-known class of languages (with
all of the properties shown here already being known), the techniques are specific
to DPO systems and might still be adaptable for another variant, or possibly a
restricted application of the formalism.

The closure of L$ under the prefixes operation pref(L) = {w ∈ Σ∗L | ∃u ∈
Σ∗L, wu ∈ L} follows from Propositions 1 and 2 in [Fli12].

In all of the systems constructed next, a lot of garbage is created during the
execution, due to the fact that the number of nodes or edges added or removed
by a rule cannot vary. In fact the amount of garbage created is always linear in
the length of the derivation. That does not invalidate the constructions, which
deal only with controlling the applicable rules so as to obtain a certain language.

4.1 Operations on Graph Transformation Systems

It is expedient to define some basic operations on graphs, morphisms, rules,
which can be used to build up more complicated systems from given ones. A
constructive approach will allow us to see many closure properties.

We will introduce a number of simple constructions that will prove to be
versatile tools for crafting the derived systems, especially systems which accept a
language that can be obtained by any of a number of operations that preserve the
individual sequences of rule applications, such as union, concatenation, shuffling.
In building new systems from old, an elementary tool for managing the controlled
simulation of one system by another, which we will need for many of the proofs,
is the suspension construction. It assigns to each graph (V,E, L, s, t, l) the graph
(V] {v̂}, E ∪ {(v, v̂) | v ∈ V }, L] {∗̂}, s ∪ s′, t ∪ t′, l ∪ l′) with s′((v, v̂)) = v,
t′((v, v̂)) = v̂, l′(v̂) = ∗̂, and to each morphism of graphs one that preserves v̂
and adds to the edge mapping the right mapping of the suspension edges. It is
a functor and preserves the application of double pushout rules and creates no
spurious rule applications. In other words, it defines an augmentation relation on
graphs which even guarantees that every rule application in the adapted system
corresponds to a unique rule application in the original system. In the graphical

representation, it will be drawn like this G , with a little box around the
name of the graph whose nodes are linked to v̂. (the hyperedge-like appearance
[DKH97] is accidental). We will often call a state of the derived system which
corresponds to a state of the input system, and which allows the corresponding
translated rule applications, an augmented state. Note that Lemmata 1 and 2
are actually an easy application of the first embedding theorem in [Ehr77].

89

Lemma 1. If there is a derivation G
t,g⇒ H in S and ∗̂ is a label not in lab(S),

then there is exactly one derivation with all objects Lt, Kt, Rt, G, D, H (see
Def. 7) suspended on a single node v̂ labeled ∗̂ and the restriction of every graph
and morphism in the diagram to the nodes and edges is the original derivation.

Proof. Every new edge’s image is determined because there is exactly one edge
from the node v̂ to any other node; one ascertains that the resulting diagram
still commutes and is a double-pushout situation.

Uniqueness is also given when considering sequences of derivations, because
when the modified direct derivation applies, the new H will just be the suspen-
sion of the old H on a uniquely labeled node again. �

Concurrent applications of rules, not strictly under consideration here, are
also preserved because any of the new edges which are deleted or created in the
derivation are attached to nodes which are already deleted resp. created.

Lemma 2. Any derivation remains valid if new nodes in Kt, and their images
in Lt and Rt and G, D, H, are introduced; any derivation remains valid if any
new edge is attached in L and G to nodes that are not deleted by the rule t

Proof. The morphisms of the rule application now also map the additional nodes
and edges. The dangling edge condition is fulfilled, because no new edges involv-
ing deleted nodes are introduced. �

The formalism of DPOi/i graph rewriting is fully time symmetric, but since
backward derivations play no role in our current investigation, we also state

Lemma 3. It is always possible to augment the effect of a rule by adding nodes
and edges to Rt, and changing the rule by composing the right-hand side with
a : Rt ↪→ R′t, without rendering any application of t impossible.

Proof. The pushout of the right-hand side always exists, regardless of any con-
ditions on the left-hand side. �

However, the addition of edges that involve nodes in Rt can make subsequent
derivations invalid by interfering with deletions. This does not happen if all nodes
involved are never deleted by any rule.

Also, it is obvious that the image of every match of a connected pattern is
connected. For a more rigorous discussion and formal proofs of the following
theorems, one would concentrate more on such lemmata and use them to show
that certain relations can be found between the original and augmented graphs.

Theorem 1. LD is closed under intersection, and so is L$.

Proof. Given two systems S1 = ({Ut1}t∈T1 , s1) and S2 = ({Ut2}t∈T2 , s2) over
unlabeled graphs, we map S1 and S2 to labeled graph transformation systems S′1,
S′2 labeled over disjoint alphabets without changing their languages. Rules are
composed via disjoint unions for graphs and morphisms. Let G ÷ G′, f ÷ g, S1 ÷ S2
denote such an operation on graphs, morphisms and entire systems, discarding
rules whose rule label is used in one system only. �

90

The same would be true for parallel applications of rules. The construction
is useless for deadlock languages, as Lδ(S1 ÷ S2) ⊇ Lδ(S1) ∩ Lδ(S2), without
equality in general. While a deadlock on one side is a deadlock of the compound
system, if w is not a deadlock for either but s1

w⇒S1 s′1 and s2
w⇒S2 s′2 and the

sets of rules activated in s′1 and s′2 respectively have disjoint sets of labels (which
is possible) then w is a new deadlock word of the compound system.

It is possible to create an alternative such that if G
t,g⇒S H, the graph Ĝ has

the graph G as a subgraph and Ĝ
t,ĝ⇒Ŝ Ĥ and Ĝ

t,g′⇒ Ŝ H ′, where H ′ differs from

Ĥ as to the possible rule applications.

To do this, suspend the graph G on a node v̂, link v̂ via an edge labeled l 6∈
lab(S) to a fork-shaped graph ({v0, v1, v2}, {e0, e1}, {lf}, s, e, l), s(e0) = s(e1) =
v0, t(e0) = v1, t(e1) = v2 and l assigns to v0, v1, v2, e0, v1 the new label lf 6∈
lab(S). The second version of s′ in Figure 1 shows this. Place v1 and v2 in
different contexts, so that no automorphism of Ĝ swaps them. The rule U ′t of
the new system S ′ is a suspension of the rule Ut, as in the upper left hand diagram
of Figure 1. If v1 and v0 share some feature that can be matched together with
the attached suspended graph, and v2 does not, then an alternative can be used
to stop one simulation and begin another.

a:
la ra

L K R

M

a:
la ra

L K R

MM

s
s':

ss
s': s':

Fig. 1. A number of basic control patterns. Left: a rule featuring a suspension of the
rule L ←↩ K ↪→ R whose applicability is now controlled by supplementary nodes and
edges, is subject to the presence of an edge between black nodes. Right: the same but
with a mobile marker instead of reattachment of the suspended part. Left, bottom:
three possible augmented versions of state s, to be used with the rule directly above
them. From left to right, these allow: repeated application; alternative; one step only.

91

4.2 Closure under Homomorphisms

Unlike what one experiences with Petri net languages, where the free-labeled
languages form families with weak properties [Jan87], not even containing the
regular languages and having few closure properties, the derivation languages
of DPOi/i systems over finite graphs are even closed under length-preserving
(string) homomorphisms. Relabelings of rules can thus be simulated.

The constructions we devised for proving the closure properties have a com-
monality in that the states of the systems generating the original languages are
in some way augmented, preserving applicability and translating effects of rules
as long as the right conditions are met. This is most often achieved by suspending
the state of each input system on a node, which is then attached to a scaffolding
that governs the applicability of rules, whose nodes and edges bear labels that
do not occur in the states of the original systems.

We come to our second theorem,H1 denoting closure under length-preserving
(letter-to-letter) homomorphisms.

Theorem 2. LD = H1(LD) and L$ = H1(L$).

Proof. The construction takes a system ({Ut}t∈T , s0}) with e, o ∈ T and a mor-
phism h : T ∗ → ((T \ {e, o}) ∪ {a})∗ with h(x) := x for all x ∈ T \ {e, o},
and h(e) = h(o) := a 6∈ T , augments the start state by adding dummies, and
slightly adapts all rules Ut t ∈ T \ {e, o}, and combines the rules Ue and Uo to
a new rule Ua that has the combined effects of Ue and Uo, one of which is ap-
plied to a dummy, a “sandbox” portion of the state. Ua also renews the sandbox
precondition that has just been consumed and cleans up the result of the old.

Figure 2 shows the construction. In the middle part of the scaffolding (nodes
drawn as empty circles), an edge that is part of any valid match comprising the
boxed state is transported. This has the effect of disconnecting the dummy parts
which are used only once, whereas for the part containing the real state it has no
effect because of the special setup of the system state. The rules whose labels’
images under the homomorphism are unequivocal (called “b” in the drawing) are
changed so that they can apply only to the part of the augmented state where
they should apply. Termination rules for L$ are handled the same as other rules.

The construction works because one part of the augmented rule always ap-
plies to the portion of the augmented state which is really responsible for the
simulation, leading to another state which contains a faithful copy of the succes-
sor state of the system being simulated, while the applicability of the remainder
of the augmented rule is always ensured. �

Still, less concurrency will in general be possible: if e has unbounded auto-
concurrency because it does not delete any nodes, and o always has limited auto-
concurrency, the number of times a can be applied in parallel will be limited by
the necessary applications of o to the sandbox. One can provide for guaranteed
bounded concurrency by attaching not one, but several suspended Le and Lo.

Incidentally, the following corollary follows (because one rule can be used to
simulate all end rules), even though the construction from Theorem 2 is more
powerful than necessary in that case.

92

s0:

s0 Le Lo

a:

LoLe KoKe RoRe LeLo

b:

Lb Kb Rb

lb rb

la ra

Fig. 2. Closure under length-preserving homomorphisms. The box stands for the graph
whose name it contains, see explanation in Section 3

Corollary 1. L{$1,...,$n}(S) := {w ∈ (T \ {$1, . . . , Sn})∗ | s0 w$⇒S} with $ ∈
{$1 . . . $n} is in L$ for finite {$1, . . . , $n}: having multiple termination rules
does not give any new languages.

Note that DPOi/i systems over graphs can simulate a Turing machine; one
can introduce one rule for extending the work tape, one rule per transition of the
machine, and after a successful calculation read the word off the input tape using
a special set of rules finishing with an application of $ when hitting the end of
the input tape. If one labels with λ all rules except those that read the word off
the tape, one sees that the images of the derivation languages L$ under deleting
homomorphisms are indeed all recursively enumerable languages (it is clear that
they are r.e.), which gives us non-closure under arbitrary homomorphisms easily
for all classes under consideration.

4.3 Closure under Other Operations

The shuffle operation, defined on words as λ w = w λ = {w} and au bv =
{a}(u bv)∪{b}(v au), returns all possibilities of interleaving the two words. It
is commutative, associative when extended to languages: L M=

⋃
l∈L,m∈M l m.

Theorem 3. LD is closed under shuffling, so is L$ and so is Lδ. We provide a
construction that to any two systems S1 and S2 returns a system S3 such that
Lx(S3) = Lx(S1) Lx(S2) for x ∈ {δ,D, $}.
Proof. The start state s0 of S3 in Figure 3 contains two independent parts. The
rules are completely symmetric. When applied to the left hand part of the state,

93

the compound rule simulates one direct derivation of system S2 while letting
run idle the part which simulates the rule from S1. When applied to the part
shown on the right hand side of s0 in Figure 3, it works the other way round.
This idle running is made possible by providing the unused part of the rule with
all preconditions it may need: the disjoint union (without relabeling) of all the
left-hand sides of rules in S1, L1. Since any amount of initially provided copies
L1 eventually runs out if some of the rules consume more nodes or edges than
they produce, every rule of the compound system must provide another copy of
L1 to be used whenever a S2 derivation is simulated, as well as a copy of L2 to
be used in the converse case.

What do we do if one system is empty, or if a rule is not present in one of
the systems? Unlike for intersection (Theorem 1), then the idle transition and
empty state come into play, which means the parts belonging to the non-existent
rule can simply be left out, leaving the degree of the yellow node at 1.

For L$, the end rule must be extended differently from the other rules. It must
make sure that both simulations have reached an end state. The construction
works for Lδ because when deadlock occurs for one system 1 or 2, the other can
go on. It is only after both reach a deadlock that the termination condition is
met, which is exactly the desired behaviour. �

s0:
s2 a:

L1

s1

L2

La2

La1

Ka2

Ka1

Ra2

Ra1

la ra

L1

L2

Fig. 3. Construction for closure under shuffling.

Theorem 4. LD is closed under union, so is L$ and so is Lδ. Given two systems
S1 and S2, one can produce a system S3 such that Lx(S3) = Lx(S1) ∪ Lx(S2)
for x ∈ {D, $, δ}.

Proof. In the construction, one first assumes or makes sure that systems S1 and
S2 have disjoint label sets. Then one attaches s1 and s2, the respective start
states, to a node. A derivation step in the combined system moves the current
state, which is suspended to a node of the scaffolding (the black nodes in Figure
4.3) to a new place. But every rule Ut of S3 must simulate the effects of both
Ut,1 and Ut,2, its counterparts in the individual systems, except if one does not
have a rule with that name, in which case it needs only simulate one.

94

At the beginning, the compound system will make a decision, choosing non-
deterministically whether to simulate S1 or S2, since the state is crafted in such
a way that it allows both kinds of match for the symmetrically constructed rules:
if S2 is chosen, the part pertaining to S1 must not interfere with it, but it must
be activated no matter what. To guarantee this, one constructs graphs L1 and
L2 which are the disjoint unions, without relabeling, of all left-hand side graphs
of system S1 resp. S2. These are produced as post-condition in every Rt to make
sure the unused part of rule a which simulates the other system finds a match.
The connected component to the right of the start state is used only once.

Of course, the constant activation must only be available under certain cir-
cumstances and without effect for the system whose simulation has been chosen
in the beginning. Mobile markers (labeled with M) and fixed markers (labeled
*) are introduced that regulate the availability of the individual derivations. �

s0:
s1s2

L1 L2
a:

La1

La2

L2
la raKa1

Ka2

Ra1

Ra2R2

M M M
M

M

* * *

* *

* * *

* * *

M M

M MM

Fig. 4. Construction for union. The dashed lines are also edges. The connected com-
ponent of the start state with L1 and L2 is used only once.

Next, let us try concatenation of languages L �M = {lm | l ∈ L,m ∈ M}.
The idea is to simulate system S1 whose language is L, letting the other system
run idle, always with the possibility of taking an alternative turn (the large “1”
beneath the diagram in Figure 5 points out the edges that, if matched by the
horizontal edge visible in the rule diagram, lead to this alternative) to a state
from where the simulation of S1 is dead and S2 takes over.

Theorem 5. LD is closed under concatenation.

Proof. The construction from Figure 5 is not sufficient by itself for the aim at
hand, since it only generates {uv ∈ T ∗ | u ∈ LD(S1), v ∈ LD(S2), |u| > 0}. The
union of this language with LD(S2) is the desired language LD(S1)�LD(S2). �

95

s1

M

L2

M

s2

L1

M

1

La1 La2
M M

Ka1 Ka2
M M

Ra1 Ra2
M M

L2 L1

M M

la ra

Fig. 5. Construction for concatenation of LD. The first diagram is the starting state,
where Li is the disjoint union of all left hand sides of Si and si is the start state.

4.4 Iterated Shuffle and Concatenation

Languages of shuffle expressions [Gis81] are the closure of the finite languages
under (∪,�, ,� ,) applied in any order. The iterated shuffle L of a language
L is defined in analogy with the Kleene star: L(0) := {λ}, for i ∈ N \ {0},
L(i) := L L((i−1)), L :=

⋃
i∈N L

(i). LD is also closed under � and .

s0 a:
M

La
M

s0:
Ka

M

Ra
M

s0la ra

Fig. 6. Construction for iterated catenation (Kleene star) of LD.

s0: s0 a: La

la ra
Ka Ra s0

Fig. 7. Construction for iterated shuffling of LD.

Theorem 6. LD is closed under Kleene star and iterated shuffling.

96

Proof. Iterated shuffle is very easily done for LD (Figure 7). It is sufficient to
add a new suspended version of the start state of the original system after every
derivation step of the system that will generate the iterated shuffle of the original
language. The iterated concatenation of a LD language is also a LD language,
as shown in Figure 6. After each step, a new subgraph with the suspended start
state s0 is created and the scaffolding is extended in such a way that in the next
step, that subgraph can serve for matching La. If that happens, the old evolved
state is no longer available, because the marker then moves to the new part of
the scaffolding which is only connected to the new start state at first. �

Unfortunately this does not mean that all prefix-closed languages of shuffle
expressions are also derivation languages, since pref(A�B) does in general not
equal pref(A)� pref(B).

4.5 Synopsis

We summarize the results obtained so far in a table.

∩ h h1 ∪ pref � � Σ∗\
L$ Y N Y Y Y ? Y ? ? ?

LD Y N Y Y Y Y Y Y Y N

Lδ ? N Y Y N ? Y ? ? ?
Table 1. Synopsis of closure properties. Question marks indicate open points.

Some of the properties are obviously false for LD, since it contains only prefix
closed languages. If the deadlock languages are not closed under pref , this is
because the only LD language to contain the empty word is {λ}. Otherwise, it
would be enough to add disjointly, with 0 and ∗ being new labels, a fragment
({v0, v1, v2, vmarker}, {e0 : v0 → v1, e1 : v1 → v0, e2 : v0 → v2, e3 : v1 → v2, e4 :
vmarker → v0}, lv = {(v0, 0), (v1, 0), (v2, 0), (vmarker, ∗)}) to the start graph, and
to each rule a part moving an ∗ labeled marker node down an edge. A deadlock
can be voluntarily entered after n > 0 steps.

5 Outlook

Using constructions on graphs, morphisms and systems, we have been able to
find a number of closure properties. Obviously we want the remaining ones filled
in. Also, we would like to know if Theorem 2 can be extended to cover arbi-
trary λ-free homomorphisms. Also, we still do not know the relationship be-
tween L$ and the context sensitive languages CS. We suspect Lp = {ap | p ∈
N is a prime number} might serve to distinguish the two, as it is difficult to see
how a transformation system over finite graphs might generate it.

Overall, we think the subject deserves attention. Putting the informally de-
scribed constructions and proof ideas on a firm formal basis is therefore an
immediate goal.

97

References

[Cor95] Andrea Corradini, Concurrent computing: from Petri nets to graph gram-
mars, Electronic Notes in Theoretical Computer Science 2 (1995), 56–70.

[CRM77] Stefano Crespi-Reghizzi and Dino Mandrioli, Petri nets and Szilard lan-
guages, Information and Control 33 (1977), no. 2, 177–192.

[Dar98] Philippe Darondeau, Deriving unbounded Petri nets from formal languages,
CONCUR’98 Concurrency Theory (1998), 533–548.

[Dar04] , Unbounded Petri net synthesis, Lectures on Concurrency and Petri
Nets (2004), 1–20.

[DKH97] Frank Drewes, Hans-Jörg Kreowski, and Annegret Habel, Hyperedge re-
placement graph grammars, Handbook of graph grammars and computing
by graph transformation, World Scientific Publishing Co., Inc., 1997, pp. 95–
162.

[Ehr77] Hartmut Ehrig, Embedding theorems in the algebraic theory of graph gram-
mars, Fundamentals of Computation Theory, Springer, 1977, pp. 245–255.

[EPS73] Hartmut Ehrig, Michael Pfender, and Hans-Jürgen Schneider, Graph-
grammars: An algebraic approach, Switching and Automata Theory, 1973.
SWAT’08. IEEE Conference Record of 14th Annual Symposium on, IEEE,
1973, pp. 167–180.

[Fli12] Nils Erik Flick, On derivation languages of DPO graph transformation sys-
tems. part 1: Introducing derivation languages, 2012, Accepted for GCM
2012, Bremen.

[GG99] Stéphane Gaubert and Alessandro Giua, Petri net languages and infinite
subsets of Nm, Journal of Computer and System Sciences 59 (1999), no. 3,
373–391.

[Gis81] Jay Gischer, Shuffle languages, Petri nets, and context-sensitive grammars,
Communications of the ACM 24 (1981), no. 9, 597–605.

[Hac76] Michel Hack, Petri net languages, Tech. Report 159, Massachusetts Institute
of Technology, 1976.

[HMP01] Annegret Habel, Jürgen Müller, and Detlef Plump, Double-pushout graph
transformation revisited, Mathematical Structures in Computer Science 11
(2001), no. 05, 637–688.

[Jan79] Matthias Jantzen, On the hierarchy of Petri net languages, RAIRO: Theo-
retical informatics 13 (1979), 19.

[Jan87] , Language theory of Petri nets, Petri Nets: Central Models and
Their Properties (1987), 397–412.

[JZ08] Matthias Jantzen and Georg Zetzsche, Labeled step sequences in Petri nets,
Applications and Theory of Petri Nets, 29th International Conference,
PETRI NETS 2008, Xi’an, China, June 23-27, 2008. Proceedings (Kees
van Hee, 2008, pp. 270–287.

[KKHK06] Hans-Jörg Kreowski, Renate Klempien-Hinrichs, and Sabine Kuske, Some
essentials of graph transformation, Recent Advances in Formal Languages
and Applications 25 (2006), 229–254.

[Pet76] James L. Peterson, Computation sequence sets, Journal of Computer and
System Sciences 13 (1976), no. 1, 1–24.

[Sta78] Peter H. Starke, Free Petri net languages, Mathematical Foundations of
Computer Science 1978 (1978), 506–515.

98

Graph Rewriting with Contextual Refinement

Berthold Hoffmann

Fachbereich Mathematik und Informatik, Universität Bremen, Germany

Abstract. Plain graph rewrite rules modify subgraphs of constant size
and fixed shape. In this paper, we propose rule schemata that are re-
fined by deriving them with meta-productions based on contextual graph
rewrite rules. The application of a refined schema may modify subgraphs
of variable size and shape. We show that every rule based on single
pushouts, on neighborhood-controlled embedding, or on variable substi-
tution can be modeled by a schema with appropriate meta-productions.
It turns out that the question whether schemata may have refinements
with critical overlaps is not decidable in general.

1 Introduction

With graph rewriting, modifications of graphs can be specified in a rule-based,
“declarative” way. Plain graph rewrite rules as in [5] are rather weak: they only
allow to modify subgraphs of fixed shape and constant size. Even this is powerful
enough from a theoretical point of view [21], many practical rewriting task need
to modify subgraphs of variable shape and size. Now, if a set of plain rules is
used to specify such tasks, they often have to be coordinated. Control can be
specified in an imperative way (as in Progres [20]), or with separate formalisms
like control conditions [17]. Both are only loosely related to the rules, so that it
is harder to analyze properties of such a heterogeneous specification.

In this paper, we propose to make rules more expressive so that they can
specify rewriting tasks that modify subgraphs of variable size and shape. We
propose schemata – rules with variables – that are refined with contextual meta-
productions before they are applied. This mechanism is based on the classical
definition of rules. Properties of refined rules can be studied, using induction
over the meta-productions. Moreover, rules with refinements can be executed,
very efficiently, in the rewriting tool GrGen [1].

The paper is organized as follows. The next section defines graphs, plain
rules for defining graph rewriting, and context-free and contextual productions
for deriving graph languages. Then we recall related work on rules with variables,
and define schemata, meta-productions, and the refinement process in Sect. 3. In
Sect. 4 we relate rule schemata to other kinds of graph rewrite rules. It turns out
that rules defined by single pushouts, by neighborhood-controlled embedding,
and generic rules with graph variables can all be modeled by a single schema with
appropriate meta-productions. Expressiveness of schema refinement has a price:
it can, in general, not be decided whether two schemata can have refinements that
are parallelly dependent. We conclude by indicating future work, in Section 5.

99

2 Graphs, Rewriting, and Derivation

We define graphs with edges that may attach not just to two nodes – a source
and a target – but to any number of nodes. Nodes and edges of a graph are
labeled. Such graphs are known as labeled hypergraphs in the literature, see
[10].

Definition 1 (Graph). A pair C = (Ċ, ~C) of finite sets of colors is used to label

nodes and edges, with a finite set X ⊆ ~C with a type function type : X → Ċ∗
containing variable names.

A graph G = (Ġ, ~G, att , `) consists of disjoint finite sets Ġ of nodes and ~G

of edges, a function att : ~G→ Ġ∗ that attaches sequences of nodes to edges; and
of a pair ` = (˙̀, ~̀) of labeling functions ˙̀ : Ġ → Ċ for nodes and ~̀: ~G → ~C for

edges so that, for every edge x ∈ ~G with `G(x) ∈ X , the attached nodes attG(x)

are distinct to each other and labeled so that `∗G(attG(x)) = type(~̀(x)).1 The
component functions of a graph G will often be denoted as attG and `G.

A (graph) morphism m : G→ H is a pairm = (ṁ, ~m) of functions ṁ : Ġ→ Ḣ

and ~m : ~G → ~H that preserves attachments and labels: attH ◦ ~m = ṁ∗ ◦ attG,
˙̀
H = ˙̀

G ◦ ṁ, and ~̀
H = ~̀

G ◦ ~m. The morphism m is injective, surjective, and
bijective if its component functions have the respective property. If m is bijective,
we call G and H isomorphic, and write G ∼= H. If m is injective, and maps nodes
and edges onto themselves, we call G a subgraph of H, and write G ↪→ H.

Let G be a graph. For an edge e ∈ ~G and a set E ⊆ ~G of edges, G − e and
G − E shall denote the subgraph without e and E, respectively. We denote an
edge x ∈ XG with ~̀

G(x) = ξ ∈ X as x : ξ, and call it a variable. XG = {x ∈
~G | ~̀G(x) ∈ X} is the set of variables in G. G is terminal if XG = ∅. The kernel
of G is its terminal subgraph G = G −XG. The subgraph of G consisting of a
variable x : ξ and its attached nodes is called the star of e, and denoted by 〈x〉.
〈XG〉 =

⋃
x∈XG〈x〉 is the star set of G.

We base the rewriting of graphs on a well-known known definition in [5], but
represent rules in a particular way.

Definition 2 (Rewriting). A (graph rewrite) rule ρ = (P ↪→ B ←↩ R) con-
sists of a body graph B with subgraphs P and R that are called pattern and a
replacement, respectively. The graph I = P ∩ R is called interface; the nodes
and edges in O = P \ R are called obsolete, and those in N = R \ P are called
new. Sometimes we refer to components of ρ by Pρ, Rρ etc.

An injective morphism m : P → G is a match of ρ in G if it satisfies the
following gluing condition: Every edge of G that is attached to the match of an
obsolete node in m(O) is in m(P). Then the rule ρ rewrites the graph G under

1 A∗ denotes finite sequences over a set A; the empty sequence is denoted by ε, and
|w| denotes the length of a sequence w ∈ A∗. For a function f : A→ B, its extension
f∗ : A∗ → B∗ to sequences is defined by f∗(a1, . . . , an) = f(a1) . . . f(an), for all
ai ∈ A, 1 6 i 6 n, n > 0. For functions or morphisms f and g, f ◦ g denotes their
composition.

100

π = y y π′ = y y

Fig. 1. Two productions

y ⇒+
π′ · · · · · · y ⇒π · · · · · ·

Fig. 2. Deriving lassos with productions π and π′

m into a graph H that can be constructed uniquely (up to isomorphism) by
(1) removing the match m(O) of the obsolete nodes and edges, giving the kept
graph K, and (2) adding a fresh copy of N disjointly to K and substitute, in

the attachments of the edges ~N , every node from v ∈ İ by its match m(v) ∈ K̇.
Then we write G⇒ρ,m H.

The requirement that matches should be injective is no restriction [11].
Graph rewriting can be used for computing, by applying rules to some input

graph as long as possible to yield an output graph. Rules can also be used to
derive a set of graphs (a “language”) from some start graph. A special form of
rules have turned out to be useful for that purpose: productions replace a variable
(edge) by gluing a graph to its attached nodes, and removing the variable. In
the literature, this is known as context-free (hyperedge) replacement [10]. Here
we extend productions so that some nodes in the context of the variable may
be involved as well. This increases their generative power so that practically
relevant languages can be derived, such as graphs representing object-oriented
programs [4].

Definition 3 (Derivation). A rule π = (P ↪→ B ←↩ R) is a production for a
variable name ξ ∈ X if ξ is the label of the only edge x in P and if R equals B−x.
For a finite set Π of productions, we write G ⇒Π H, and say that Π directly
derives G to H if there is a rewrite G⇒π,m H for some match m of some π ∈ Π.
As usual, ⇒+

Π and ⇒∗Π denote the transitive and reflexive-transitive closure of
this relation, respectively. We call π context-free if P = 〈x〉, and contextual
otherwise; then P is the disjoint union of 〈x〉 with a discrete context graph Cπ,
and its underlying context-free production π̃ is obtained by removing Cπ from P ,
but not from R. The production π is nonterminal if XR 6= ∅, and monotone if
|P | 6 |R|. Π is loop-free if P 6⇒+

Π R for the pattern P of every production in Π.

Example 1 (Contextual Derivation). Figure 1 shows two productions and illus-
trates our conventions for drawing graphs, rules, and productions. In figures of
graphs, nodes are drawn as circles and have their labels inscribed. In our exam-
ples, all terminal edges are attached to exactly two nodes, a source and a target,
and are drawn as arrows from their source to their target and have their labels

101

ascribed. Variables are drawn as boxes and have their labels inscribed, with lines
connecting them to their attached nodes. By default these nodes are assumed
to be ordered counter-clockwise around the variable, starting in the north; oth-
erwise small numbers ascribed to the lines indicate the order, as in rule δdπ′ of
Fig. 6 further below.

The pattern and the replacement graphs of rule bodies are enclosed in boxes,
where the boxes extending farther to the left indicate the patterns; their inter-
section defines the interface. Context nodes are set off by drawing them in red
(appearing as dark grey in B/W). We use the convention that an edge belongs
only to the subgraph whose box contains it entirely; so the edge is new in π, i.e.,
it belongs to R, but not to P .

If a star with a variable named y is used as a start graph, the productions in
Fig. 1 derive a language of “lassos” as in Fig. 2: n applications of the context-free
production π′ derive a chain of length n; the terminal contextual production π
inserts an edge from the last node in the chain to a node in the context that has
been derived previously. The noose of a lasso contains at least one node, since
in π, the attached node of y and the context node must match different nodes
in a graph.

3 Deriving Rules with Meta-Productions

The idea to derive graph rewrite rules with meta-rules has arisen early, inspired
by two-level string grammars [13,9]. D. Plump and A. Habel have introduced
substitutive rules whose patterns and replacements contain variables that may
be substituted by arbitrary graphs [18]. Operationally, this makes rule matching
highly non-deterministic, so that substitutions were restricted to graphs derived
with context-free productions in [14]. Here we study the more general case where
not just a part of the pattern or of the replacement can be substituted, but the
rule can be derived as a whole, and allow the productions to be contextual,
not just context-free. This notion of rules is supported by the rewriting tool
GrGen [1,15].

We add variables to the body B of a rule (P ↪→ B ←↩ R) in order to indicate
the places where it shall be refined with productions Π, and call this a schema.
In derivations B ⇒∗Π B′ of the body, we must indicate which subgraph of B′

shall be the pattern and the replacement of the refined schema (P ′ ↪→ B′ ←↩ R′),
respectively. This leads to the notion of meta-productions, and to a classifica-
tion of variable attachments. We assume that the variable names X come with
functions pat , repl : X → N so that pat(ξ) 6 |type(ξ)| and 1 6 repl(ξ) 6 pat(ξ)
for every variable name ξ ∈ X . For every variable x : ξ in a graph G with
attG(x) = v1 . . . vk, these functions designate discrete subgraphs of G: the pat-
tern attachment 〈x〉p consists of the leading attached nodes v1 . . . vpat(x), and the
replacement attachment 〈x〉r consists of the trailing attached nodes vrepl(x) . . . vk.

The meta-productions for refining schemata consist of contextual spine pro-
ductions, with a body rule indicating which subgraphs of the spine body are
meant to refine the pattern and the replacement of the schemata.

102

Definition 4 (Schema, Meta-Production). A schema is a rule σ = (P ↪→
B ←↩ R) so that P ∩ R = B, and 〈x〉p ↪→ P and 〈x〉r ↪→ R for every variable
x ∈ XB .

A meta-production δ = (π, ρ) consists of a contextual spine production π =
(Pπ ↪→ Bπ ←↩ Rπ), and of a body rule ρ = (Pρ ↪→ Bρ ←↩ Rρ) so that (Pρ ↪→
Bπ ←↩ Rρ) is a schema, i.e., Bπ = Bρ.

The following facts are direct consequences of Def. 4.

Fact 1. For meta-production δ = (π, ρ), the following holds:

1. Its spine production π satisfies

(a) Pπ = Iπ, Rπ = Bπ and Pπ ↪→ Rπ, and
(b) the intersections Pρπ = Pρ ∩ Pπ and Rρπ = Pρ ∩ Rπ are discrete so that

Pρπ = 〈e〉p∪Cπ and Rρπ = 〈e〉r∪Cπ, where Cπ is the context graph of π.

2. Consider a schema σ = (P ↪→ B ←↩ R), and a derivation B ⇒π,m B′ so that
m(Cπ) ↪→ P ∩R, where g shall denote the morphism Rπ → B′. Then

(a) m(Pρπ) ↪→ P and m(Rρπ) ↪→ R,
(b) P ′ = P ∪ g(Pρ) and R′ = R ∪ g(Rρ) are terminal graphs so that σ′ =

(P ′ ↪→ B′ ←↩ R′) is a schema, and B ↪→ B′.

These facts allow to define the refinement of schemata by meta-productions. A
schema is refined until a rule is obtained, which can be used to rewrite a graph.

Definition 5 (Schema Refinement). Consider a schema σ = (P ↪→ B ←↩ R)
and a meta-production δ = (π, ρ) as above.

A match m : Pπ → B of the spine production π to the body B of σ is a
meta-match if m(Cπ) ↪→ P ∩R. For the derivation B ⇒π,m B′, Fact 1 allows to
extend B′ to a schema σ′ = (P ′ ↪→ B′ ←↩ R′); Then we write σ ⇓δ,m σ′, and say
that δ refines σ to σ′ (at m).

For a contextual meta-production δ = (π, ρ), the underlying context-free
meta-production is δ̃ = (π̃, ρ). Let ∆ be a finite set of meta-productions so
that δ ∈ ∆ implies δ̃ ∈ ∆. Then ⇓∆ denotes refinement steps with one of its
meta-productions, and ⇓∗∆ denotes repeated refinement, its reflexive-transitive
closure. The derivates of a schema σ = (P ↪→ B ←↩ R), contain its refinements
without variables: ∆(σ) = {ρ | σ ⇓∗∆ ρ, ρ = ρ }.

We write G ⇒∆,σ H and say that σ, refined with ∆, rewrites G to H if
G⇒ρ H for some derivate ρ ∈ ∆(σ).

A meta-production δ = (π, ρ) is nonterminal, monotone, and loop-free if its spine
production π has the respective property. Moreover, it is pattern-monotone if it
is monotone, and if |Pπ| < |Rπ| implies |Pρπ| < |Pρ|.

We require that the sets ∆ of meta-productions used in this paper are pro-
ductive and loop-free, and that their nonterminal meta-productions are pattern-
monotone.

The structure of context-free meta-rules implies that they really refine the
kernels of schemata.

103

σ =

a

path

(a) A schema

δ̃ =
z

path

path

δ′ =

path

path

(b) Meta-productions for path

ρ =

a

z

(c) A derivate of σ

Fig. 3. Schema refinement with meta-productions

Theorem 1. For derivates (P ′ ↪→ B′ ←↩ R′) ∈ ∆(P ↪→ B ←↩ R), B ↪→ B′, and
(P ′ ↪→ B′ ←↩ R′) is a rule.

Proof Sketch. Applying Fig. 1.2b to refinement sequences (P ↪→ B ←↩ R) ⇓∗∆
(P ′ ↪→ B′ ←↩ R′) allows to conclude that B ↪→ B′, P ↪→ P ′ and R ↪→ R′. Since
∆ is monotonic and productive, the derivate is free of variables so that B′ ∼= B′,
confirming the claim. ut

Example 2 (Refining a Schema). Fig. 3 illustrates schema refinement and rewrit-
ing with derivates, and shows how we draw schemata and meta-productions. In
diagrams, the line connecting a variable x : ξ in a body B with some attached
node vi in attB(x) = v1 . . . vk has an arrow tip at x if i 6 repl(x), a tip at vi if
i > pat(x), and no tip otherwise.

(a) shows a simple schema σ with a variable name path. As with rules, the
pattern and replacement part are enclosed in boxes. The variable lies outside of
these boxes since it does belong, neither to the pattern, nor to the replacement.
The pattern and replacement of the schema have the node a in common. The
variable path attaches to a node v1 that shall be deleted, and to a node v2 that
shall be inserted, with their incident edges.

(b) shows two context-free meta-productions δ and δ′ for the variable name
path occurring in σ. Meta-productions are drawn “upright”, with their spine
variable on top, and their spine replacement in the outer box. Within this box,
the pattern and replacement of the body schema are drawn as usual, where the
box extending farthest to the left designates the body pattern. The variable
path is attached to two nodes v1 and v2. The non-recursive meta-production δ
replaces an edge from v1 to some node z by an edge from z to v2. The recursive
meta production δ′ extends paths to v1 and from v2 by one edge.

(c) shows a derivate ρ of σ. Applying δ′ two times and δ once, this generates
a rule wherein pattern and replacement have a begin node a (on the top) and an
end node z (at the bottom) in common. Pattern and replacement specify paths
of the same length between a and z, in opposite direction. In applications of
ρ, only the matches of a and of z may be incident to other nodes, due to the
dangling condition.

104

A single rewriting step with some derivate of some schema may match, delete,
and insert subgraphs of arbitrary size: In the example, a path of arbitrary length
is matched, deleted (up to its start and end node), and a reverse path of the
same length is inserted. This goes beyond the expressiveness of plain rewrite
rules, which may only match, delete, and insert subgraphs of constant size.

Note that the application of a derivate ρ ∈ ∆(σ), although it is the result of a
compound meta-derivation, is a single rewriting step G⇒ρ H, like a transaction
in a data base. Note also that the refinement process is completely rule-based.

Operationally, we cannot construct the derivates of a schema first, and apply
one of them later, because ∆(σ) is infinite in general. Rather, we interleave
matching and refinement in a goal-oriented way.

Algorithm 1 (Applying a Schema to a Graph).
Input : A terminal graph G, a schema σ0 = (P0 ↪→ B0 ←↩ R0), and a set ∆ of

productive and loop-free meta-productions wherein all nonterminal productions
are monotone.

Output : Either a refinement σi ∈ ∆(σ0) of σ0 with a match mi in G, or no
if no derivate in ∆(σ0) applies to G.

1. Search for an injective morphism m0 : P0 → G of the original schema σ0, and
set i to 1.

2. Search for an underlying context-free meta-production δ̃i ∈ ∆̃ with a refine-
ment (Pi−1 ↪→ Bi−1 ←↩ Ri−1) ⇓∗

δ̃i
(Pi ↪→ Bi ←↩ Ri) such that the morphism

mi−1 can be extended to a morphism mi : Pi → G that identifies, at most,
context nodes of the spine production of δi with nodes in Pi−1 ∩Ri−1.

3. If no such meta-production can be found, undo refinements to the closest
step j < i where some meta-production exists that has not been inspected
for σj previously; if already all meta-productions have been inspected, for all
previous steps, and for all initial matches m0, answer no.

4. If σi does contain further variables, increase i by one and goto Step 2.
5. Otherwise, σi is a rule with a morphism mi : Pi → G. If mi violates the gluing

condition, goto Step 3. Otherwise mi is a match of the derivate σi in G. ut
Actually, all matches for all applicable derivates can be enumerated, so that the
potential nondeterminism can be handled by backtracking.

GrGen rules are executed this way; only the match of a particular pattern Pi
is determined according to an efficient search plan that is pre-computed, taking
into account the shape of the type graph, as well as that of the particular graph
G, and the whole rule is compiled into sequences of low level C# instructions
that do graph matching and construction [1].

Theorem 2. Algorithm 1 terminates, and is correct.

Proof Sketch. (Termination.) The search tree spanned by Algorithm 1 is finite:
Step 1 chooses among finitely many initial morphisms m0 in G, and Step 2
chooses among a finite number of morphisms for a finite number of meta-
productions. So the search tree has finite breadth. It has finite depth as well,
because every δi with nonterminal spine production in Step 2 satisfies |Pi−1| 6

105

|Pi| due to pattern-monotony of ∆, and the number of consecutive steps with
|Pi−1| = |Pi| is bound by |∆| since ∆ is loop-free. Then the search for a match
terminates, after applying finitely many terminal meta-productions.

(Correctness.) The identification condition in Step 2 makes sure that the
morphism mi either is an injective morphism for the underlying context-free
metaproduction δ̃i, or an injective morphism for the original meta-production
δi. Thus Step 5 determines an injective morphism of a derivate of σ0, and checks
whether it is a match. The backtracking in Step 3 and Step 5 makes sure that
every possible candidate for a derivate with a match is considered.

Corollary 1. For a schema σ and meta-productions ∆ as above, it is decidable
whether some derivate ρ ∈ ∆(σ) applies to a graph G, or not.

4 Properties of Contextual Schema Refinement

In this section, we study properties of schema refinement in order to motivate its
usefulness. We compare schemata to other ways of graph rewriting: graph rewrit-
ing by single pushout, by neighborhood-controlled embedding, and by generic
rules. In all three cases, a rule can be modeled by a single schema with appro-
priate meta-productions, whereas they cannot be modeled by a single plain rule.
Finally, we study whether the existence of critical overlaps, a decidable property
for plain rewriting, is decidable for schemata as well.

4.1 Graph Rewriting with Node [Dis-]Connections

We investigate ways of graph rewriting where a single rule may delete and
redirect a variable number of edges, respectively. First we define generic meta-
productions that allow to models such rules.

Definition 6 ([Dis-]Connecting Meta-Productions). Fig. 4 shows discon-
necting meta-productions that extend a schema by B-nodes in its interface that
are connected by obsolete edges to an obsolete A-node. A disconnecting config-
uration d ∈ Ċ × ~C × {in, out} × Ċ specifies labels and directions of the refined

δ0d =

A C

disconnectd

δ1d =

A C

B

disconnectd

disconnectd

a

Fig. 4. Meta-productions for a discon-
necting configuration d = (A, a, in,B)

δ0c =

A C

connectc

δ1c =

A C

B

connectc

connectc

a

b

Fig. 5. Meta-productions for a connecting
configuration c = (A, a, in,B, b, in,C)

106

nodes and edges. A so refined schema will remove edges that connect nodes in
the interface to the obsolete node attached to the variable.

Fig. 5 shows connecting meta-productions that extend a schema by B-nodes
in its interface that are connected to an obsolete A- node and to a new C-node.
Again, a connecting configuration d ∈ Ċ × ~C × {in, out} × Ċ × ~C × {in, out} × Ċ
specifies the labels and directions of the refined nodes and edges. A so refined
schema will remove, for the obsolete node v and the new node v′ attached to
the variable, edges connecting v to interface nodes, and insert edges connecting
these to v′ instead.

∆dc shall denote the set of all disconnecting and connecting meta-produc-
tions, for all disconnecting and connecting configurations.

Graph rewriting defined with single pushouts [7] (SPO, for short) is a vari-
ation of graph rewriting by double pushout [5] (DPO for short), which in turn
is the basis for Def. 2. Apart from techical details of their definition, SPO rules
have the same form as DPO rules. However, rewriting is defined differently: no
dangling condition needs to be checked when matching a rule; the match m(v) of
every obsolete node v of τ is deleted in any case, together with all edges outside
the match m(P) that are incident with m(v) (which would violate the dangling
condition otherwise).

Definition 7 (SPO Rewriting with Schema Refinement). A plain rule
ρ = (P ↪→ B ←↩ R) can be turned into a SPO schema σρ = (P ↪→ B ←↩ R) that
performs SPO rewriting by attaching, to every obsolete node v in Pρ \Rρ, vari-

ables x : disconnectd, for every disconnecting configuration d = (˙̀
P (v), a, io, A)

where a ∈ ~C, io ∈ {in, out}, and A ∈ Ċ.

Fact 2. Consider a rule ρ with an injective morphism m : Pρ → G.
Then the SPO schema σρ has a derivate ρ′ ∈ ∆dc(σρ) with a rewriting step

G⇒ρ′ H so that all obsolete nodes of ρ are deleted, together with their incident

(“dangling”) edges in ~G \ ~m(~P).

Proof Sketch. Consider m : Pρ → G. Then Pρ ↪→ Pρ′ by Fact 1. Now, at ev-
ery obsolete node v of ρ, the schema can be refined with disconnecting meta-
productions so that it covers every “dangling” edge e incident in ṁ(v) and its
“neighborhood node” – say v′ – that is outside m(P). As the pre-image of v′

in the schema is in the interface of the refined schema, and the edge is in the
obsolete part of the pattern, the dangling edges are removed while the nodes in
the neighborhood are preserved. The refined rule satisfies the gluing condition,
and does exactly what SPO rewriting does. 2 ut

Graph grammars with neighborhood-controlled embedding are “the other no-
tion” of graph rewriting. Their definition is set-theoretic, and their most widely

2 We have ignored the fact that matches of SPO rules need not be injective. How-
ever, we can construct the (finite) set the quotients Q(ρ) by identifying arbitrary
isomorphic subgraphs in Pρ. Then for every non-injective match of ρ, Q(ρ) contains
a quotient with an equivalent injective match.

107

investigated subclass has rules where the pattern is a single node [8]. Here, we
consider the more general case where the pattern is a graph.

More precisely, a neighborhood-controlled embedding rewrite rule (NCE
rewriting, for short) η = (M,D, I) consists of terminal graphs M and D, called
mother graph and daughter graph respectively, and of a set of connecting in-
structions I ⊆ Ṁ × ~C × {in, out} × Ċ × ~C × {in, out} × Ḋ. Let Ĩ denote the

tuples (v, a, io,A) ∈ Ṁ × ~C × {in, out} × Ċ without a connecting instruction in
(v, a, io,A, b, io′, v′) ∈ I.

A rule η as above applies to a graph G if there is an injective morphism
m : M → G so that the subgraph m(M) is induced by the nodes ṁ(Ṁ). Then
the application of η at m deletes the subgraph m(M) from G, adds a fresh copy
of the daughter graph D, and obtains the graph H by executing the connecting
instructions as follows:

• If c = (v, a, io,A, b, io′, v′) ∈ I, for all A-nodes z ∈ Ġ \ ṁ(Ṁ) connected by
an a-edge e with ṁ(v) in direction io, a b-edge connecting z with the node
v′ ∈ Ḋ in direction io′ is inserted in H.
• For every d = (v, a, io,A) ∈ Ĩ, a-edges between v and A-nodes in direction io

are just deleted from G.

NCE rewriting can be modeled with schema refinement as follows.

Definition 8 (NCE Rewriting with Schema Refinement). An NCE rule
η = (M,D, I) as above can be transformed into a schema ση = (M → B ←↩ D)
where the underlying rule ση has an empty interface (i.e., B = M]D), and B

contains, for every connecting instruction c = (v, a, io,A, b, io′, v′) ∈ I, a variable
x : connectc′ with attB(x) = vv′ and c′ = (˙̀

M (v), a, io,A, b, io′, ˙̀
D(v′)), and for

every d = (v, a, io,A) ∈ Ĩ, a variable x : disconnectd′ with attB(x) = v, and
d′ = (˙̀

M (v), a, io,A).

Fact 3. For an NCE rule η as above, there exists an NCE graph rewriting step
G ⇒η H if and only if there is a rewriting step G ⇒ρ H using some derivate
ρ ∈ ∆dc(ση) of its schema ση.

Proof Sketch. As in the case of modeling SPO rewriting, a match m : Mη →
G can be taken as a basis to refine ση so that all connection instructions are
“performed”, and all other “dangling” edges are deleted.

There are other derivates that do not satisfy the dangling condition although
the NCE rule applies. As with SPO rewriting, this is the case when the recursive
meta-productions are not applied exhaustively. Even then, a refinement of the
schema may violate the dangling condition when the match of the refined pattern
contains nodes that are connected by edges outside the match. This, however,
violates the application condition for NCE rules as well, where the match must
be the induced subgraph of the matched nodes. ut

4.2 Generic Graph Rewriting

Let us recall the definition of generic rules [14], slightly re-phrasing it according
to our definition of plain rules, and extending it to contextual substitution.

108

More precisely, a generic rule γ = (P ↪→ B ←↩ R) over a finite set Π of
(monotone, productive) contextual productions consists of two graphs P,R with
variables so that (1) all variables in B belong to P or to R and (2) every variable
name occurring in R occurs in P as well.

An instance of γ is obtained by replacing, in its body B, every variable x : ξ
occurring in B by the same terminal graph Gξ with a derivation 〈x〉 ⇒∗Π Gξ so
that variables carrying the same name have identical instances, and contextual
nodes occurring in the derivation belong to the intersection of the pattern and
the replacement, and are identical for all variables names ξ. A generic rewrite
step G⇒ρ H applies an arbitrary instance ρ of γ.

Generic rules can be modeled by schema refinement as follows.

Definition 9 (Meta-Productions and Schemata for Generic Rules). Let
γ be a generic rule for productions Π.

Then r = (k,m, n) is a reproduction instruction of a variable name ξ ∈ X if

(a) ξ labels k variables in the body B of γ = (P ↪→ B ←↩ R), whereof m variables
occur in P and n variables occur in R, or

(b) Π contains a production (P ′ ↪→ B′ ←↩ R′) where the variable name ξ occurs
in R′, and the variable name ξ′ in P has a reproduction instruction r.

We transform γ and Π into a schema σγ and meta-productions ∆γ,Π as follows:

1. Whenever a variable ξ with type(ξ) = l1 . . . la has a reproduction instruction
r = (k,m, n), X shall contain a fresh variable name ξd with type(ξd) = lk1 . . . l

k
a

and pat(ξd) = k · pat(ξ) and repl(ξd) = k · repl(ξ).
2. We transform every generic rule γ = (P ↪→ B ←↩ R) into a schema σγ =

(P ↪→ B′ ←↩ R) by replacing all variables x1 : ξ, . . . , xk : ξ in B (where
we assume, for 1 6 i 6 k, that if xi is in P , so are x1 . . . xi−1, and if xi is
in R, so are xi+1 . . . xk) by a reproduction variable y : ξd with attB′(y) =
pcat (attB1

(x1), . . . , attBk(xk)).3

3. For every production π = (P ↪→ B ←↩ R) ∈ Π with R = B−x and x : ξ ∈ P ,
and for every reproduction instruction r = (k,m, n) of ξ, ∆γ,Π shall contain
a context-free reproducing production δrπ = (πr, ρ) so that
(a) the kernel Bπr of its spine production consists of n disjoint copies

B1, . . . , Bn of B so that B1, . . . , Bm are in its body pattern Pρ and
Bk−n+1, . . . , Bk are in its body replacement Rρ;

(b) for every variable x : y in B, where we assume that wi is the copy of the
attached node sequence attB(x) in Bi (for 1 6 i 6 k), Bπr contains a
variable y : ξr with attBπr (y) = pcat (w1, . . . , wk).3

Note that ∆γ,Π does contain also the underlying context-free rule δ̃rπ of δrπ
if π is contextual. Thus 〈y〉 ↪→ Pπr if x is the variable in P , and all other
variables belong to Rπr . In Bπr , a copy Bi belongs to Pρ if 1 6 i 6 m, and to
Rρ if k − n + 1 < i 6 k. If δ is contextual, its contextual nodes belong both
to Pρ and to Rρ, are shared by all copies, and are contextual nodes in πr.

3 If, for 1 6 i 6 k, the words wi = ai,1 . . . ai,n have equal length n > 0, their pointwise
concatenation is pcat (w1, . . . , wk) = a1,1 . . . ak,1 . . . a1,n . . . ak,n.

109

γ =
y y y

(a) A generic rule

π = y

y

π′ =
y

y

(b) Meta-productions Π

σγ =

yr

(c) The schema for γ

ρ =

(e) A derivate of σγ

δrπ =

yr

δrπ′ =

yr

yr
1 2 3

(d) Meta-productions for Π

Fig. 6. Modeling a generic rule with a schema

Example 3 (Modeling a Generic Rule by a Schema). Fig. 6 shows (a) a generic
rule γ, and (b) the productions Π = {π, π′} for the variable y which are already
known from Fig. 1.

This is modeled as follows: (c) the schema σγ for the generic rule uses the
variable yr for r = (3, 2, 2), as y occurs trice in γ, and twice in its pattern
and replacement. (d) The meta-productions ∆R,Π = {δrπ, δrπ′} reproduce the
productions. Note that the contextual node in production π is not reproduced
in meta-productions δrπ. (e) A derivate ρ of the schema (using δrπ′ twice and δrπ
once) equals an instance of γ using the productions π′ twice and π once, for each
occurrence of y. By using the contextual meta-production δ̃rπ, the contextual
node in the derivate ρ would be identified with another node its body, which
has to be in the intersection of the pattern and replacement to satisfy the gluing
condition.

Fact 4. A rule ρ is the instance of a generic rule γ if and only if it is a derivate
of the schema ρ of γ.

4.3 Existence of Critical Overlaps

Two rules ρ = (P ↪→ B ←↩ R) and ρ′ = (P ′ ↪→ B′ ←↩ R′) overlap critically if
there exists a graph G with matches m : P → G and m′ : P ′ → G that intersect
in deleted nodes or edges, i.e., if m(P) ∪m′(P ′) 6↪→ m(P ∩ R) ∪m′(P ′ ∩ R′). It
suffices to check, in the finite number of minimal overlaps (where every node and
edge of G is in the image either of P or of P ′), whether the matches are parallel
independent in the sense of [5, Def. 5.9] or not. In the case of schema refine-
ment, the more interesting case is whether two schemata may have refinements
that overlap critically, or not. Since schemata have infinitely many derivates in
general, this question is harder to answer. Unfortunately, we obtain:

110

Theorem 3. For rule schemata σ1 and σ2 with meta-productions ∆, it is, in
general, undecidable whether or not σ1 and σ2 have derivates ρ1 ∈ ∆(σ1) and
ρ2 ∈ ∆(σ2) with critical overlaps.

Proof. (By contradiction.) We reduce this problem to deciding whether context-
free languages are disjoint, which is known to be undecidable [16, Thm. 14.3].

We define a representation of words as string graphs, and context-free rules
as context-free productions over string graphs.

(1) Let Ċ = {◦} and let all variable names ξ ∈ X have arity arity(ξ) = ◦◦.
(2) A graph G with nodes Ġ = {vo, v1, . . . , vn}, edges ~G = {eo, e1, . . . , en}

where attG(ei) = vi−1vi for 1 6 i 6 n is a string graph representing the word

w = ~̀∗
G(e1 . . . en) ∈ ~C∗. The string graph representing a word w is unique up to

isomorphism, and denoted by w•.
(3) Now a proper context-free rule r = (ξ, w) ∈ X × ~C+ can be represented

as a meta-production δr with a spine production π = (Pπ ↪→ Bπ ←↩ Rπ), where
P = ξ•, R = w•, and, in B, P and R are disjoint up to their start and end nodes.
It is shown in [10] that these productions perform context-free derivations on
string graphs. In the body rule ρ = (Pρ ↪→ Bρ ←↩ Rρ) of δ, Pρ = Bπ and Rρ is
empty.

Now consider schemata where the string graphs for ξ and ξ′ are enclosed in
edges labeled with triangles (as start and end markers):

σ1 =

ξ

B C σ2 =

ξ′

B C

Then derivates ρ1 = (P ′1 ↪→ B′1 ←↩ R′1) ∈ ∆(σ1) and ρ2 = (P ′2 ↪→ B′2 ←↩
R′2) ∈ ∆(σ2) are parallelly dependent if P ′1 ∼= P ′2. By the definition of derivates,
and meta-productions, this implies that P ′1 ∼= P ′2 ∼= w• for some word w ∈
(~C \ X)∗, i.e., if w is in the context-free string languages derived from ξ and
from ξ′, respectively. In other words, σ1 and σ2 are parallelly independent if the
languages derived from ξ and ξ′ have an empty intersection.4 ut

Note that this result holds even if the meta-productions are context-free.

5 Conclusions

In this paper we have defined how schemata of plain graph rewrite rules can be re-
fined with contextual meta-productions. This kind of rules has been implemented
in the GrGen rewriting tool [1]. Graph rewriting with schema refinement allows

4 There is no loss of generality if we assume that the context-free rules are proper, i.e.,
have non-empty right-hand sides, since every context-free grammar can be trans-
formed into one where only the start symbol has a rule with an empty right-hand
side. Then the question is still undecidable for the sublanguages without the empty
word ε.

111

to model graph rewriting with SPO, NCE, and generic rules. Although schema
refinement is based on DPO, some properties are lost since schemata may have
infinitely many derivates. So it is not decidable whether schemata have derivates
with critical overlaps, or not.

Until now, rules, (meta-) productions, and schemata are unconditional. Re-
cently, the theory of plain graph rewriting has been extended to rules with nested
application conditions [6], and with “HR-conditions” proposed in [12] where the
graphs in nested conditions can be refined by context-free productions as well.
The constructions of this paper shall be extended by such application conditions
as well. We also work on a transformation of schema refinement into sets of plain
rules that are applied according to a certain strategy (which applies transformed
meta-productions as long as possible). This will allow us – hopefully – to deter-
mine advanced properties of schema refinement, like confluence and termination,
by analyzing the transformed rules. Because, this is a major motivation of for
future work: to provide assistance for users of GrGen in analyzing the behavior
of their specifications.

Acknowledgments. I wish to thank several people: Katharina Saemann and
Ruth Schönbacher found an obvious error in Def. 5, and Giorgio Busatto, An-
negret Habel, and Hendrik Radke have lent their ears (and brains) to simplify
and consolidate early drafts of this paper. Frank Drewes carefully reviewed a
later version of the paper. Edgar Jakumeit conceived and implemented recur-
sive refinements for rules in the GrGen rewriting tool, under the supervision of
Rubino Geiß.

References

1. J. Blomer, R. Geiß, and E. Jakumeit. GrGen.net: A generative system for graph-
rewriting, user manual. www.grgen.net, 2006-2012. Version V3.5RC.

2. F. Drewes, B. Hoffmann, D. Janssens, and M. Minas. Adaptive star grammars and
their languages. Theoretical Computer Science, 411:3090–3109, 2010.

3. F. Drewes, B. Hoffmann, D. Janssens, M. Minas, and N. Van Eetvelde. Shaped
generic graph transformation. In A. Schürr, M. Nagl, and A. Zündorf, editors,
Applications of Graph Transformation with Industrial Relevance (AGTIVE’07),
number 5088 in Lecture Notes in Computer Science, pages 201–216. Springer, 2008.

4. F. Drewes, B. Hoffmann, and M. Minas. Contextual hyperedge replacement. In
A. Schürr, D. Varró, and G. Varró, editors, Applications of Graph Transforma-
tion with Industrial Relevance (AGTIVE’11), number 7233 in Lecture Notes in
Computer Science. Springer, 2012. To appear.

5. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph
Transformation. EATCS Monographs. Springer, 2006.

6. H. Ehrig, A. Habel, L. Lambers, F. Orejas, and U. Golas. Local confluence for
rules with nested application conditions. In H. Ehrig, A. Rensink, G. Rozenberg,
and A. Schürr, editors, ICGT, volume 6372 of Lecture Notes in Computer Science,
pages 330–345. Springer, 2010.

112

7. H. Ehrig, R. Heckel, M. Löwe, L. Ribeiro, A. Wagner, and A. Corradini. Algebraic
approaches to graph transformation part II: Single pushout approach and compar-
ison to double pushout approach. In Rozenberg [19], chapter 4, pages 247–312.

8. J. Engelfriet and G. Rozenberg. Node replacement graph grammars. In Rozenberg
[19], chapter 1, pages 1–94.

9. H. Göttler. Semantical descriptions by two-level gaph-grammars for quasi-
hierarchical graphs. In M. Nagl and H.-J. Schneider, editors, Graphs, Data Struc-
tures, Algorithms (WG’79), number 13 in Applied Computer Science, pages 207–
225, München-Wien, 1979. Carl-Hanser Verlag.

10. A. Habel. Hyperedge Replacement: Grammars and Languages. Number 643 in
Lecture Notes in Computer Science. Springer, 1992.

11. A. Habel, J. Müller, and D. Plump. Double-pushout graph transformation revis-
ited. Mathematical Structures in Computer Science, 11(5):637–688, 2001.

12. A. Habel and H. Radke. Expressiveness of graph conditions with variables. Elect.
Comm. of the EASST, 30, 2010. International Colloquium on Graph and Model
Transformation (GraMoT’10).

13. W. Hesse. Two-level graph grammars. In V. Claus, H. Ehrig, and G. Rozenberg,
editors, Graph Grammars and Their Application to Computer Science and Biology,
number 73 in Lecture Notes in Computer Science, pages 255–269. Springer, 1979.

14. B. Hoffmann. Shapely hierarchical graph transformation. In Proc. IEEE Symposia
on Human-Centric Computing Languages and Environments, pages 30–37. IEEE
Computer Press, 2001.

15. B. Hoffmann, E. Jakumeit, and R. Geiß. Graph rewrite rules with structural
recursion. In M. Mosbah and A. Habel, editors, 2nd Intl. Workshop on Graph
Computational Models (GCM 2008), pages 5–16, 2008.

16. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, Reading, Massachusetts, 1979.

17. S. Kuske. More about control conditions for transformation units. In H. Ehrig,
G. Engels, H.-J. Kreowski, and G. Rozenberg, editors, Theory and Application of
Graph Transformation (TAGT’98), Selected Papers, number 1764 in Lecture Notes
in Computer Science, pages 323–337. Springer, 2000.

18. D. Plump and A. Habel. Graph unification and matching. In J. E. Cuny, H. Ehrig,
G. Engels, and G. Rozenberg, editors, Proc. Graph Grammars and Their Appli-
cation to Computer Science, number 1073 in Lecture Notes in Computer Science,
pages 75–89. Springer, 1996.

19. G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformation, Vol. I: Foundations. World Scientific, Singapore, 1997.

20. A. Schürr. Programmed graph replacement systems. In Rozenberg [19], chapter 7,
pages 479–546.

21. T. Uesu. A system of graph grammars which generates all recursively enumerable
sets of labelled graphs. Tsukuba J. Math., 2:11–26, 1978.

113

Parallel Graph Grammars with Instantiation
Rules Allow Efficient Structural Factorization of

Virtual Vegetation

Kataŕına Smoleňová1, Winfried Kurth1, and Paul-Henry Cournède2

1 Department Ecoinformatics, Biometrics and Forest Growth, Georg-August
University of Göttingen, 37077 Göttingen, Germany

ksmolen@gwdg.de,wk@informatik.uni-goettingen.de
2 Ecole Centrale Paris, France
paul-henry.cournede@ecp.fr

Abstract. Parallel rewriting of typed attributed graphs, based on the
single-pushout approach extended by connection transformations, serves
as the backbone of the multi-paradigm language XL, which is widely
used in functional-structural plant modelling. XL allows to define in-
stantiation rules, which enable an instancing of graphs at runtime for
frequently occurring substructures, e.g., in 3-d models of botanical trees.
This helps to save computer memory during complex simulations of veg-
etation structure. Instantiation rules can be called recursively and with
references to graph nodes, thus providing a unifying formal framework
for various concepts from the literature: object instancing, structural
factorization, Xfrog multiplyer nodes, L-systems with interpretation. We
give simple examples and measure the computation time for an idealized
growing virtual plant, taken from the GreenLab model, in its implemen-
tation with instantiation rules in XL, compared to a version without
instantiation rules.

Keywords: instantiation rules, structural factorization, XL, growth gram-
mar

1 Introduction

Realistic simulation of large vegetation scenes or growing plant structure may
become computationally very intensive if no methods to reduce the geometrical
complexity are used. To save computer memory, different techniques have already
been proposed in the field of computer graphics. When employing one of them,
object instancing [21], the geometric representation is specified just for one or
more representative plants (master). Other identical plants (instances) are placed
in the scene, having a reference to the master object. Instances may be exact
copies of the referenced object [8] or approximate ones [4, 2].

Thanks to the repetitive nature of plants, instancing may be applied on
several levels. To efficiently render trees that look realistic from both distant
and close views Max [15] modelled larger structures from smaller ones: a leaf is

114

used to form a twig with several leaves, several twigs form a big twig, big twigs
form a subbranch, and so on. Cournède proposed a mathematical formalism [3]
for decomposition of a plant into substructures [23], used in the GreenLab model
[3, 14], that allows fast simulation (deterministic and stochastic) and relies on
botanical principles. It assumes that all organs of the same kind, created at the
same time, behave identically. This botanically-based formalism of “structural
factorization” of plants is of special interest in the area of functional-structural
plant modelling.

In higher plants, the elementary botanical units named metamers or phy-
tomers are set in place rhythmically or continuously depending on the type of
plants [1]. In the rhythmic case, the plant grows by successive shoots of several
metamers produced by buds. The appearance of these shoots defines the archi-
tectural growth cycle. A growth unit is the set of metamers built by a bud during
a growth cycle. Plant growth is said continuous when meristems keep on func-
tioning and generate metamers one by one. The number of metamers on a given
axis (that is to say generated by the same meristem) is generally proportional
to the sum of daily temperatures (above a reference temperature depending on
the species) received by the plant. In such case, the growth cycle is defined as
the thermal time unit necessary for a meristem to build a new metamer. In both
continuous and rhythmic cases, the chronological age of a plant (or of an organ)
is defined as the number of growth cycles it has existed for, and the organogenesis
is used as the time step to model the plant as a discrete dynamical system.

Quite naturally, owing to the simultaneous functioning of the meristems,
parallel string rewriting grammars, i.e. L-systems [17], are most widely used to
model plant organogenesis. If only organogenesis is modelled, the formalism of
structural factorization can be expressed by L-systems [3]. The possibility to
factorize L-system productions was pointed out already by Smith [19]. Improve-
ment of the efficiency of an L-system-based algorithm for creation of virtual
plants using factorization was also discussed in [6]. The use of instancing for
improved representation of L-system-based models was explored, e.g., in [8, 2].

Widely used in the area of functional-structural plant modelling is the lan-
guage XL (eXtended L-system language) [11]. XL is a superset of the language
Java and supports the specification of graph grammars. It also allows to define
instantiation rules, which enable an instancing of graphs for frequently occuring
substructures, e.g., in 3-d models of botanical trees.

We first give a theoretical background on the language XL, including the
formal definition of instantiation rules. Afterwards we show how to use these
rules to produce inflorescence patterns, fractals, and to efficiently simulate plant
development based on structural factorization.

2 Theoretical Background

The graph model which describes the basic data structure of the language XL
is that of typed attributed graphs with inheritance over a type graph [11] (p. 98).
“Typed” means that nodes of the graph belong to a finite number of classes,

115

called “modules” in XL, and in an application of a graph grammar rule, the
types of matching nodes have to coincide. Likewise, the edges belong to a finite
number of edge types, which have also to be taken into account during graph
matching. For a given edge type, at most one edge of this type is allowed between
two given nodes. The edge types can thus be interpreted as relations on the set of
nodes. A “type graph” can be specified to restrict the allowed types of edges be-
tween nodes of given types. “Inheritance” is a concept taken from object-oriented
programming and allows a hierarchy among the node types. “Attributed” refers
to the nodes which can have a finite number of attributes of arbitrary data type.

The parallel application of a graph grammar on a graph conforming to this
model is in [11] (p. 101ff.) defined as a special case of the single-pushout approach
from algebraic graph grammar theory [7] extended by connection transforma-
tions and operators. The latter provide an embedding mechanism for the right-
hand sides of rules into the host graph which allows to consider classical parallel
string-rewriting rules (L-system rules) as a special case of graph rewriting.

In the following, we simplify the definitions from [11] in order to avoid too
much technical overhead. Particularly, we omit the attributes, the inheritance
relation and the restriction imposed by a type graph. “Instantiation rules” as a
special sort of graph transformation rules have not been formally defined in [11],
although they have been described as part of the language XL there and have
been used in various examples.

Definition 1. A Relational Growth Grammar graph (RGG graph) is a quintu-
ple G = (TN , TE , N,E, t), where TN 6= ∅ is a finite set of node types, TE 6= ∅ a
finite set of edge types, N a set of nodes, E ⊆ N ×TE ×N a set of typed edges,
and t : N → TN a node typing function. An RGG graph isomorphism is a graph
isomorphism which preserves node and edge types.

The language XL makes use of a string notation of RGG graphs which is
demonstrated in Fig. 1.

Fig. 1. Example of an RGG graph G with node types A, B, C and edge types p, q, r.
Given is also a string notation s(G) of the graph in XL (not unique). b and c are labels
referring to particular nodes.

116

Definition 2. A bi-rooted RGG graph (G,n0, n1) is an RGG graph with two
distinguished nodes n0, n1 ∈ N .

Definition 3. An (unconditional) RGG rule with L-system style embedding is
a pair ((G1,m0,m1), (G2, n0, n1)) of two bi-rooted RGG graphs (G1,m0,m1)
(the left-hand side or search pattern) and (G2, n0, n1) (the right-hand side or
production pattern). The application of an RGG rule to a host RGG graph
H consists of the simultaneous replacement of all subgraphs of H which are
isomorphic (via an RGG graph isomorphism) to G1 by G2, with a subsequent
redefinition of some of the incoming and outgoing edges: Each edge going from
the rest of the host graph to the node m0 in G1 is redirected to n0, and each
edge going from m1 in G1 to the rest of the host graph gets n1 as its new start
node. All other edges going into or out of G1 are deleted.

In the case that an edge goes from m1 in one isomorphic copy of G1 to m0

in another copy, an edge of the same type is inserted from n1 of the first copy of
G2 to n0 of the second copy of G2 (see [11] for a more rigorous definition). In the
case of overlapping copies of G1 in H, the result of rule application is undefined.

For shortness, we write G1 ==> G2 for an RGG rule, omitting the nodes
m0,m1, n0 and n1. In the language XL, the distinguished nodes of an RGG
rule are not given explicitly, but are taken from the string representation of the
graphs: m0 is the leftmost and m1 the rightmost node in s(G1), and analogously
for G2. For instance, the application of the RGG rule A ==> D -r-> E to the
graph in Fig. 1 will result in the graph depicted in Fig. 2.

Fig. 2. Result of a parallel rule application to the RGG graph of Fig. 1 (see text).

The advantage of this form of embedding the right-hand side into the host
graph is its consistency with parallel string rewriting by L-systems. A string
which is transformed by an L-system can simply be represented by a linear chain
of nodes, connected by edges of just one special type, which we call “successor
edges”. The symbols of the L-system correspond to the node types.

Definition 4. An RGG (Relational Growth Grammar) (TN , TE , G0, R) consists
of a finite set of node types TN 6= ∅, a finite set of edge types TE 6= ∅, a start
RGG graph (axiom) G0 and a finite set of RGG rules R, with G0 and R having
all node and edge types from TN , resp., TE .

117

The parallel application of rules from an RGG to a host graph is performed
in the same way as in the case of a single rule. In XL, all node types in TN

have to be declared first, using the keyword “module” (also possible: “class”).
XL allows to split the set of rules into several subsets which are accessible under
user-defined names. Control structures like conditional branches or loops can be
used. Likewise, these control structures can also occur on the r.h.s. of rules to
control the production of subgraphs. We omit these extensions in our definitions
because they are not central for the notion of instantiation rules.

Definition 5. An instantiation rule is an RGG rule N ==> G, where the l.h.s.
consists only of a single node of type N . An RGG with instantiation rules is a
quintuple (TN , TE , G0, R, I) where the first 4 components form an RGG and I is
a finite set of instantiation rules with node and edge types from TN , resp., TE .

The application of an RGG with instantiation rules is performed as shown in
Fig. 3. G1, G2, ... are the RGG graphs which are successively obtained from the
start graph G0 by parallel application of (potentially) all rules from R in each
transformation step. They usually correspond to rough structural descriptions of
the simulated objects at discrete timesteps. S0, S1, ... are the RGG graphs which
are obtained from G0, G1, ... by parallel application of (potentially) all rules
from I. These rules can also be applied recursively. The graphs Si usually stand
for detailed geometrical descriptions (scene graphs) of the simulated objects.
S0, S1, ... can be regarded as a simulated developmental sequence of the objects.
Note that this way of applying two sets of rules is not equivalent to that used
in “table L-systems”, since the graphs Si do not undergo a new application of
rules in the next step. Nondeterminism is possible for both rule sets, R and I,
when it makes sense in an application, and can be resolved in XL by stochastic
choice of rules with given probabilities. When XL is used, the graphs Si are not
stored as data structures in the computer memory, but are derived “on the fly”
by applying rules from I to Gi at runtime in the moment when they are needed
(e.g., for rendering an image of the simulated structures). In the case of large
graphs, this can lead to a gain in efficiency.

Fig. 3. Way of operation of an RGG with normal RGG rules R and instantiation rules
I, starting from RGG graph G0.

The same scheme of rule application is also valid for L-systems or graph
grammars with interpretive rules [11] (also called interpretative [12] (p. 25),
interpretation [18], or homomorphism rules [16]). Interpretive rules differ from

118

instantiation rules in the feature that multiple instances of a right-hand side of
an interpretive rule which are obtained from Gi are stored as different copies
(being parts of Si) and can thus later be accessed and manipulated individually.
This is not possible for the results of instantiation rule application. The latter
are, however, less demanding in terms of computation space and time.

A further extension of the concept of instantiation rule allows to construct
graphs which encode in a concise manner the way how objects or groups of
objects are multiplied and transformed in space, including recursive construc-
tions leading to fractals. As special cases, the multiplicator nodes used in the
interactive plant modelling software Xfrog [5] can be derived this way [9].

Definition 6. An RGG with instantiation rules and references is an RGG where
the right-hand sides of the instantiation rules can contain specific nodes of the
types Ref(e), where e is an edge type. When applied to a node a in the host
graph H, each node of type Ref(e) is replaced by a copy of the subgraph of
H which is directly connected with a via an edge of type e emerging from a,
if such an edge exists (otherwise the Ref(e) node is deleted). In case of more
than one edge of type e starting in a, the choice of the adjacent subgraph is
nondeterministic.

For instance, the instantiation rule R ==> Ref(p) -q-> Ref(p), applied to
the host graph R -p-> A, will result in the graph A -q-> A -p-> A. Since in
most applications, the edges of type p will be ignored during further processing
(e.g., rendering - only the subgraph spanned by a special subset of edge types
is used for rendering in XL), we will effectively have a copy of the referenced
A node: A -q-> A. This can be extended to more complex copy operations, as
we will see in the examples sections. In the language XL, the Ref nodes are
effectively realized by calls of the method getFirst(e).

3 Examples

3.1 Inflorescence Patterns and Fractals

We will first show two simple examples, providing the complete code in the
language XL, which demonstrate that the concepts introduced above can be
expressed in XL in a straightforward way. The first example (code listed in
Table 1) defines a node “Infl” (standing for “inflorescence”) by an instantiation
rule with references. Similar to the effect of the “Hydra” node from Xfrog [5],
the execution of this rule creates 250 scaled copies of the structure attached via
an edge of type m and arranges them in a pattern following spiral phyllotaxis
(Fig. 4, right-hand part; see [9] for the emulation of the other Xfrog arrangement
nodes in XL).

In XL, edges of the standard type “successor” are automatically generated
when nodes are separated by blanks (or linefeeds), as in the right-hand side
of the rule in line 9. An edge type other than the standard ones requires a
declaration of a corresponding identifier (here “m”, done in line 1) and can then

119

Table 1. Listing of the XL code for the inflorescence example (see text).

1 const int m = EDGE_0;

2 module Infl ==> for (int i: 1:250) ([

3 { float h = i * 0.02;

4 float s = 0.2 * Math.sqrt(i); }

5 M(-h) RH(i*137.5) Translate(s,0,0) RU(i*80/250)

6 Scale(0.2,0.2,0.3*h+0.1) getFirst(m)

7]);

8 public void run() [

9 Axiom ==> P(10) Cylinder(20, 1) Cone(5.2, 2.4) P(14)

10 Infl -m-> Sphere;

11]

be used in the form “-m->” (line 10), here to connect the node of type Infl

with a node corresponding to a geometrical object, here a Sphere with default
radius 1. Sphere belongs, together with Cylinder, Cone and the geometrical
transformation node types M (move), Translate (shift by a vector), RH (rotate
around head direction), RU (rotate around up direction), P (set colour index)
and Scale (rescale coordinates for the subsequent scene subgraph) to the default
node types of XL, which do not need to be declared in the code, whereas Infl is a
user-defined node type declared with an instantiation rule in lines 2-7. The “for”
control structure in line 2 (with its body ending in line 7) iterates the production
of the nodes which are specified in lines 5-6, together with the execution of the
imperative statements in lines 3-4, with a counting index i running from 1 to
250. The calculations of h and s and the rotation angles and scaling factors
in lines 5-6 were fitted to the botanical object to be modelled. The user can
edit these lines to adapt the structure of the created inflorescence to empirical
findings and has thus much more flexibility than with a given standard portfolio
of multiplyer nodes as provided by the Xfrog software [5].

From the default start node called “Axiom”, the execution of the “run”
method (line 8) generates in one step of rule application a chain of four nodes
with geometrical/visible meaning (line 9), followed by a node of type Infl and
– attached by an m edge – a single Sphere node (line 10). This graph is saved
internally (Fig. 4 left).

During rendering, the Infl node is further transformed by the instantia-
tion rule: In each iteration of the loop (line 2), a separate branch (enclosed by
brackets [], line 2 and 7) is created, consisting of geometry nodes (line 5) and a
scaled copy of the sphere from line 10, which is found by following the getFirst

reference (line 6) along the edge -m-> from the processed Infl node in line 10.
getFirst(m) corresponds to a reference node Ref(m). This results in the visual
arrangement of 250 ellipsoids shown in Fig. 4 (right part).

In an analogous way, the code from Table 2 produces after n steps of ap-
plication of the run rules (lines 7-8) a chain of n − 1 nodes of type Rec and

120

Fig. 4. Structure resulting from the inflorescence example (Table 1). Left: Generated
graph after the application of the single non-instantiation rule (lines 9-10 in Tab. 1).
Unbroken edges stand for the successor relation, broken edges for a type m connection.
Right: Rendered view of the corresponding 3-d structure, taking the application of the
instantiation rule (lines 2-7) into account.

one node of type A (Fig. 5, left part). The instantiation of the Rec nodes by
the translated copies which are referenced in the instantiation rule in lines 3-5
renders this graph into a Sierpinski triangle of recursion depth n (Fig. 5, right
part). Note that the stored graph is growing only linearly in n. The initiator A is
here getting its shape from a sphere (line 2), but the shape of the initiator has
no influence on the resulting fractal pattern for large n. The method can easily
be generalized to other iterated function systems (IFS) or recurrent IFS (RIFS),
cf. [8].

Table 2. XL code for Sierpinski triangle, version with instantiation rules with refer-
ences.

1 const int m = EDGE_0;

2 module A extends Sphere(0.4);

3 module Rec ==> Scale(0.5) [Translate(0, 0.5, 0) getFirst(m)]

4 [Translate(-0.433, -0.25, 0) getFirst(m)]

5 [Translate(0.433, -0.25, 0) getFirst(m)];

6 public void run() [

7 Axiom ==> A;

8 A ==> Rec -m-> A;

9]

The Sierpinski triangle can also be generated by an instantiation rule in a
purely recursive way, without references (Table 3). The generated graph is then
even simpler: it consists of only two nodes, Root→ Rec, and its structure does not

121

Fig. 5. Structure resulting from the Siepinski triangle example (Table 2). Left: Gener-
ated graph, right: rendered view of the corresponding 3-d structure.

change during rule application. Only the parameter n of the Rec node, denoting
recursion depth, is incremented. A disadvantage is that the graph carries less
visible information for the user.

Table 3. XL code for the Sierpinski triangle, recursive version without references
(output as in Fig. 5, right-hand side).

1 module Rec(int n) ==> if (n == 0) (Sphere(0.4))

2 else (Scale(0.5) [Translate(0, 0.5, 0) Rec(n-1)]

3 [Translate(-0.433, -0.25, 0) Rec(n-1)]

4 [Translate(0.433, -0.25, 0) Rec(n-1)]);

5 public void run() [

6 Axiom ==> Rec(0);

7 Rec(n) ==> Rec(n+1);

8]

Both recursive versions of the XL code for the Sierpinski fractal are not
optimal in terms of efficiency, since in an implementation on a real computer the
size of the recursion stack will soon be limiting when n is increased. However,
XL provides also the possibility to implement the rewriting rule of the Sierpinski
triangle in a direct way (without instantiation), avoiding heavy stack loading,
as was shown in [22] (p. 528). This solution turned out to be quite efficient and
allowed to reach a recursion depth of 20, resulting in a graph with more than 5
million nodes.

122

3.2 Structural Factorization of Plant Architecture

In an individual plant, cohorts of similar organs are created at each growth
cycle. Simulation models handle each of them individually, which may lead to
cumbersome computation in the case of tree growth simulations, as the number
of organs may exceed several millions. However, it is often not necessary to
consider local environmental conditions at the organ level. Thus, we suppose that
all organs of the same kind, created at the same growth cycle, behave identically.
From a modelling point of view, this leads to a powerful structural factorization
of the plant, based on botanical instantiations: organs are grouped by categories,
for example based on their physiological ages, characterizing their morphogenetic
differentiation, see [1]. Compact inductive equations of organogenesis can thus
be deduced, as detailed in [3].

Let P be the maximum number of metamer categories that we consider in
the plant. It is generally very small, inferior to 5. At growth cycle t, a metamer
is characterized by its physiological age p, the physiological age of its axillary
branches q (with q ≥ p) and its chronological age n. It will be denoted by mt

pq(n).
These three indices p, q, n are sufficient to describe all the metamers and their
numbers grow linearly with t. A bud is only characterized by its physiological
age p and will be denoted by sp.

The terminal bud of a plant axis produces different kinds of metamers bearing
axillary buds of various physiological ages. These buds themselves give birth to
axillary branches and so on. A substructure is the complete plant structure that
is generated after one or several cycles by a bud. In the deterministic case, all the
substructures with the same physiological and chronological ages are identical if
they were set in place at the same moment in the tree architecture. At cycle t, a
substructure is thus characterized by its physiological age p and its chronological
age n. It will be denoted by St

p(n). Since the physiological age of the main trunk
is 1, at growth cycle t, the substructure of physiological age 1 and of chronological
age t, St

1(t), represents the whole plant. Figure 6 illustrates how substructures are
organized. The total number of different substructures in a plant of chronological
age t is small, usually less than 30, even if the total number of organs is high.
Substructures and metamers are repeated a lot of times in the tree architecture,
but they need to be computed only once for each kind.

We use the concatenation operator (represented by the product symbol) to
describe the organization of plant metamers and substructures and deduce their
construction at growth cycle t by induction, as follows:

– Substructures of chronological age 0 are buds:

St
p(0) = sp

– If we suppose that they built all substructures of chronological age n−1, we
deduce the substructures of chronological age n

St
p(n) =


 ∏

p≤q≤P

(
mt

pq(n)
)upq(t+1−n)(

St
q(n− 1)

)bpq(t+1−n)


St

p(n− 1) (1)

123

Fig. 6. Construction of substructures for a plant with deterministic development. The
substructure of physiological age 1 and chronological age 2, S1(2), is built of the base
growth unit, consisting of two metamers of type m13 and one metamer of type m12, and
of substructures of chronological age 1 (created in the previous step): two lateral sub-
structures of physiological ages 2, and 3, and the terminal substructure of physiological
age 1.

For all (p, q) such that 1 ≤ p ≤ P , p ≤ q ≤ P ,
(
upq(t)

)
t

and
(
bpq(t)

)
t

are
sequences of integers that are characteristic of the plant organogenesis: upq(t)
corresponds to the number of metamers mpq in growth units of physiological
age p appearing at growth cycle t; bpq(t) is the number of axillary substructures
of physiological age q in growth units of physiological age p that appeared at
growth cycle t. These sequences can be deterministic (fixed or determined by
the functional part of the plant as detailed in [14]) or stochastic (the induction
equation (1) would be generalized in such case with the generating functions of
the number of elements in plant architecture, see [13]).

In equation 1, substructure St
p(n) is decomposed into:

– its oldest growth unit, called base growth unit:

∏
p≤q≤P

(
mt

pq(n)
)upq(t+1−n)

– the lateral substructures borne by the base growth unit (they are one cycle
younger):

∏
p≤q≤P

(
St
q(n− 1)

)bpq(t+1−n)

– the substructure grown from the apical bud of the base growth unit (also
one cycle younger):

St
p(n− 1)

124

This decomposition is illustrated on S1(2) in Fig. 6. Note that for determin-
istic growth, the substructures are independent of growth cycle t. If we append
geometrical rules (e.g., internode lengths, branching angles, phyllotaxy) to the
structural equations, we will obtain the 3-d architecture of a geometrical tree.

The (deterministic) construction of substructures can be directly translated
to XL code, using instantiation, as shown in Table 4. The phyllotactic and
branching angles are part of the instantiation rule, with parameters ang ph and
ang br, respectively. The arrays u, b stand for upq, resp. bpq, with values set as
in [10]. The resulting structure is shown in Fig. 7 (middle, right). The graph
generated after the rule applications consists, similarly to the purely recursive
Sierpinski triangle example, of two nodes, Root -> Substructure.

Table 4. XL code for plant development based on structural factorization, recursive
version with an instantiation rule.

1 module Bud(int p) extends Sphere

2 { ... /* set radius, shader */ }

3 module Metamer(int p, int q) extends Cylinder

4 { ... /* set radius, length, shader */ }

5 module Substructure(int p, int n) ==>

6 if (n > 0) (

7 for (int j = 5; j >= p-1; j--) (

8 for (int i = 0; i < u[p-1][j]; i++) (

9 RH(ang_ph[p-1]) Metamer(p, j+1)

10 for (int k = 0; k < b[p-1][j]; k++) ([

11 if (k > 0) (RH(360.0 / b[p-1][j] * k))

12 RU(ang_br[p-1][j]) Substructure(j+1, n-1)

13])

14)

15)

16 Substructure(p, n-1)

17) else (Bud(p));

18 public void run() [

19 Axiom ==> Substructure(1, 0);

20 Substructure(p, n) ==> Substructure(p, n+1);

21]

We have modified the recursive algorithm from Table 4 to store the substruc-
tures of all physiological and chronological ages (as shown in Fig. 6) in a list, so
that they could be reused as instances later on. An example of the underlying
graph is shown in Fig. 7 (left).

Furthermore, our basic algorithm for plant development, not taking advan-
tage of structural factorization and instantiation rules, was presented in [20].

To compare the computation cost of structure generation in the three above-
mentioned implementations of plant development, simulation time for the de-
velopment of the same virtual plant (Fig. 7, cf. [10, 20]) was measured on a

125

Fig. 7. Model example. Left: The essential structure of the generated graph for the
substructure of physiological age 1 and chronological age higher than 0. It consists
of metamers (M) of the base unit and corresponding substructures (S). Lateral sub-
structures are connected to metamers by a branching edge (dash-dot style). Middle:
Simulated topology at growth cycle 5 for S1(5). Right: The same topological structure
with improved geometrical representation.

computer with Intel Core i7 CPU 950, 3.07 GHz, and 12 GB RAM. We show
the results in Table 5 and Fig. 8.

Table 5. Simulation time (in ms) for the growing plant from Fig. 7 (without rendering).
w/o SF (A) refers to the basic algorithm without structural factorization from [20], w/
SF (B) refers to the recursive algorithm from Table 4, and w/ SF (C) shows the
performance of the algorithm that stores the substructures in a list.

Plant age Metamers w/o SF (A) w/ SF (B) w/ SF (C) Ratio A/C Ratio C/B

5 2,440 30.96 0.29 6.55 4.7 22.6
10 44,480 618.61 0.59 14.39 43.0 24.4
15 238,120 3,915.22 0.83 23.17 169.0 27.9
20 775,360 15,421.00 1.06 31.38 491.4 29.6
25 1,928,200 40,540.11 1.39 41.39 979.5 29.8
30 4,048,640 103,633.07 1.71 50.63 2,046.9 29.6

4 Conclusions

Object instancing is an established technique improving the performance when
modelling and rendering vegetation. Giving the theoretical background first, we
presented the features of the XL language, supporting instancing of graphs,
i.e., instantiation rules. We demonstrated their use for modelling inflorescence
patterns and fractals, and finally for the structural factorization of determin-
istically growing plants, decreasing the computational cost greatly. We would

126

 0
 20
 40
 60
 80

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

CP
U

tim
e (

s)

number of metamers (10^6)

w/o SF

Alg. A

 0
 10
 20
 30
 40
 50

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

CP
U

tim
e (

ms
)

number of metamers (10^6)

w/ SF

Alg. B
Alg. C

Fig. 8. Simulation time for the growing plant from Fig. 7 (for algorithms A, B, C
according to Table 5).

further like to explore which algorithm, implementing structural factorization,
is most suitable for modelling stochastic structures and physiological processes
within plants.

Acknowledgments We thank Reinhard Hemmerling and Ole Kniemeyer for
helpful comments. This research was funded by the German Research Foundation
(DFG) under project identifier KU 847/8-1.

References

1. Barthélémy, D., Caraglio, Y.: Plant Architecture: A Dynamic, Multilevel and Com-
prehensive Approach of Plant Form, Structure and Ontogeny. Annals of Botany 99,
375–407 (2007)

2. Brownbill, A.: Reducing the Storage Required to Render L-system Based Models.
Masters Thesis, University of Calgary (1996)

3. Cournède, P.-H., Kang, M.-Z., Mathieu, A., Barczi, J.-F., Yan, H.-P., Hu, B.-G.,
de Reffye, P.: Structural Factorization of Plants to Compute Their Functional and
Architectural Growth. Simulation 82, 427–438 (2006)

4. Deussen, O., Hanrahan, P., Lintermann, B., Měch, R., Pharr, M., Prusinkiewicz, P.:
Realistic modeling and rendering of plant ecosystems. In: 25th Annual Conference
on Computer Graphics and Interactive Techniques, pp. 275–286. ACM, New York
(1998)

5. Deussen, O., Lintermann, B.: Digital Design of Nature: Computer Generated Plants
and Organics. Springer-Verlag, Berlin Heidelberg (2005)

6. Ding, W.-L., Zhang, W.-T., Zhou, X.: An Improved Algorithm Based on Sub-
Structures for Creating Virtual Plant. In: 16th IEEE International Conference on
Artificial Reality and Telexistence–Workshops, pp. 200–204. IEEE Computer Soci-
ety Press, Los Alamitos (2006)

7. Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner, A., Corradini, A.:
Algebraic Approaches to Graph Transformation - Part II: Single Pushout Approach
and Comparison with Double Pushout Approach. In: Rozenberg, G. (ed.) Hand-
book of Graph Grammars and Computing by Graph Transformations, Volume 1:
Foundations, pp. 247–312. World Scientific, River Edge (1997)

127

8. Hart, J. C.: The Object Instancing Paradigm for Linear Fractal Modeling. In: Con-
ference on Graphics Interface, pp. 224–231. Morgan Kaufmann Publishers Inc., San
Francisco (1992)

9. Henke, M.: Entwurf und Implementation eines Baukastens zur 3D-Pflanzen-
visualisierung in GroIMP mittels Instanzierungsregeln. Masters Thesis, University
of Technology at Cottbus (2006)

10. Kang, M.-Z., de Reffye, P., Barczi, J.-F., Hu, B.-G., Houllier, F.: Stochastic 3D
tree simulation using substructure instancing. In: International Symposium on Plant
growth Modeling, simulation, visualization and their Applications, pp. 154–168.
Springer / Tsinghua University Press, Beijing (2003)

11. Kniemeyer, O.: Design and Implementation of a Graph Grammar Based Language
for Functional-Structural Plant Modelling. Ph.D. dissertation, BTU Cottbus (2008)

12. Kurth, W.: Growth Grammar Interpreter GROGRA 2.4: A software tool for the
3-dimensional interpretation of stochastic, sensitive growth grammars in the context
of plant modelling. Introduction and reference manual. Ber. FZW Göttingen, Ser.
B, vol. 38 (1994)

13. Loi, C., Cournède, P.-H.: Generating functions of stochastic L-systems and appli-
cation to models of plant development. In: Fifth Colloquium on Mathematics and
Computer Science, pp. 325–338 (2008)

14. Mathieu, A., Cournède, P.-H., Letort, V., Barthélémy, D., de Reffye, P.: A dynamic
model of plant growth with interactions between development and functional mech-
anisms to study plant structural plasticity related to trophic competition. Annals
of Botany 103, 1173–1186 (2009)

15. Max, N. L.: Hierarchical Rendering of Trees from Precomputed Multi-Layer
Z-Buffers. In: Eurographics Workshop on Rendering Techniques, pp. 165–174.
Springer-Verlag, Wien (1996)

16. Měch, R.: CPFG Version 4.0 User’s Manual, http://algorithmicbotany.org/

lstudio/CPFGman.pdf.
17. Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer-

Verlag, New York (1990)
18. Prusinkiewicz, P., Hanan, J., Měch, R.: An L-system-based plant modeling lan-

guage. In: Nagl, M., Schürr, A. Münch, M. (eds.) AGTIVE’99. LNCS, vol. 1779, pp.
395–410. Springer-Verlag, Berlin, Heidelberg (2000)

19. Smith, A. R.: Plants, fractals, and formal languages. Computer Graphics 18, 1–10
(1984)

20. Smoleňová, K., Henke, M., Kurth, W.: Rule-based integration of GreenLab into
GroIMP with GUI aided parameter input. In: 4th IEEE International Symposium
on Plant Growth Modeling, Simulation, Visualization and Application (accepted)
(2012)

21. Sutherland, I. E.: Sketchpad: A man-machine graphical communication system. In:
Spring Joint Computer Conference, pp. 329–346. ACM, New York (1963)

22. Taentzer, G., Biermann, E., Bisztray, D., Bohnet, B., Boneva, I., Boronat, A.,
Geiger, L., Geiß, R., Horvath, Á., Kniemeyer, O., Mens, T., Ness, B., Plump, D.,
Vajk, T.: Generation of Sierpinski triangles: A case study for graph transformation
tools. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE’07. LNCS, vol. 5088,
pp. 514–539. Springer-Verlag, Berlin, Heidelberg (2008)

23. Yan, H.-P., de Reffye, P., Pan, C.-H., Hu, B.-G.: Fast construction of plant archi-
tectural models based on substructure decomposition. Journal of Computer Science
and Technology 18, 780–787 (2003)

128

Generalized Cayley Graphs

and Cellular Automata over them

Pablo Arrighi1,2 and Simon Martiel3

1 Université de Grenoble, LIG, 220 rue de la chimie, 38400 SMH, France
2 Université de Lyon, LIP, 46 allée d’Italie, 69008 Lyon, France

parrighi@imag.fr
3 Université Nice-Sophia Antipolis, I3S, 2000 routes des Lucioles, 06900 SA, France

simon.martiel@gmail.com

Abstract. Cayley graphs have a number of useful features: the abil-
ity to graphically represent finitely generated group elements and their
equality; to name all vertices relative to a point; the fact that they have a
well-defined notion of translation, and that they can be endowed with a
compact metric. We propose a notion of graph associated to a language,
which conserves or generalizes these features. Whereas Cayley graphs are
regular; associated graphs are arbitrary, although of a bounded degree.
Moreover, it is well-known that cellular automata can be characterized
as the set of translation-invariant continuous functions for a certain com-
pact metric, which makes it easy to extend their definition from grids to
Cayley graphs. Similarly, we extend their definition to these arbitrary,
bounded degree, time-varying graphs.
Keywords. Causal Graph Dynamics, Curtis-Hedlund-Lynden, Dynam-
ical networks, Boolean networks, Generative networks automata, Graph
Automata, Graph rewriting automata, Parallel graph transformations,
Amalgamated graph transformations, Time-varying graphs, Regge calcu-
lus, Local, No-signalling.

Introduction

Cayley graphs. Cayley graphs are graphs associated to a finite set of gener-
ators of a group; together with their inverses. For instance let this set be π =
{a, a−1, b, b−1, . . .}. Then the vertices of the graph can be designated by the terms
π∗ = {a, a2, . . . , a−1, . . . , a.b, . . .}, but more precisely they are the equivalence
classes of these terms with respect to the group equivalence ≡, e.g. b−1.b.a ≡ a.
The edges on the other hand are those pairs (u :a, v :a−1) such that there exists
a in π so that u.a ≡ v. Cayley graphs have been used intensively because they
have a number of useful features:

– Once a point representing the identity has been chosen, all other vertices
can be named relative to that point.

– The resulting graph represents the group, i.e. the set of terms and their
equality.

129

– There is a well-defined notion of translation of the graph, which corresponds
to changing the point representing the identity, or equivalently applying an
element of the group to all vertices.

– The graph can be endowed with a compact Hausdorff metric.

In this paper, we propose a notion of graph associated to an adjacency language
L and its equivalence relation ≡L, which conserves or generalizes these features.
Whereas Cayley graphs are very regular; associated graphs are arbitrary, albeit
of a bounded degree.

Cellular Automata. Cellular Automata (CA) consist of a grid of identical square
cells, each of which may take one of a finite number of possible states. The en-
tire array evolves in discrete time steps. The time evolution is required to be
translation-invariant (it commutes with translations of the grid) and causal (in-
formation cannot be transmitted faster than a fixed number of cells per time
step). Whilst Cellular Automata are usually defined as exactly the functions
having those physics-like symmetries, it turns out that they can also be char-
acterized in purely mathematical terms as the set of translation-invariant con-
tinuous functions [9] for a certain compact Hausdorff metric. As a consequence
CA definitions are quite naturally extended from grids to Cayley graphs, where
most of the theory carries though [16, 3]. Moving on, there have been several
approaches to generalize Cellular Automata not just to Cayley graphs, but to
arbitrary graphs of bounded degree:

– With a fixed topology [15, 4, 8], in order to describe certain distributed al-
gorithms.

– Through the simulation environments of [7, 22, 13] which offer the possibility
of applying a local rewriting rule simultaneously in different non-conflicting
places.

– Through concrete instances advocating the concept of CA extended to time-
varying graphs as in [21, 12, 11], some of which are advanced algorithmic
constructions [20, 19].

– Through Amalgamated Graph Transformations [2, 14] and Parallel Graph
Transformations [5, 17, 18], which work out rigorous ways to apply a local
rewriting rule synchronously throughout a graph.

The approach of this paper is different in the sense that it first generalizes Cayley
graphs, and then applies the mathematical characterization of Cellular Automata
as the set of translation-invariant continuous functions in order to generalize
CA. Compared with the above mentioned CA papers, the contribution is to ex-
tend the fundamental structure theorems about Cellular Automata to arbitrary,
bounded degree, time-varying graphs. Compared with the above mentioned Graph
Rewriting papers, the contribution is to deduce aspects of Amalgamated/Parallel
Graph Transformations from the axiomatic and topological properties of the
global function.

Causal Graph Dynamics. The work by [1] by Dowek and one of the authors al-
ready achieves an extension of Cellular Automata to arbitrary, bounded degree,

130

time-varying graphs, also through a notion of continuity, with the same moti-
vations. However, graphs in [1] lack a compact Hausdorff metric over graphs,
which is left as an open question. As a consequence all the necessary facts about
the topology of Cayley graphs get reproven. It also leaves open whether the no-
tion of invertible causal graph dynamics is the most general one, and whether
causal graph dynamics are computable. Most of these issues vanish in the new
formalism; which suggests that the new formalism itself is the main contribution
of this paper.
This paper. Section 1 provides a generalization of Cayley graphs. This takes
the form of an isomorphism between graphs and languages endowed with an
equivalence. Section 2 provides basic operations upon generalized Cayley graphs.
Section 3 provides facts about the topology of generalized Cayley graphs. It
follows that continuous functions are uniformly continuous, composable, and
that their inverses are also continuous. Section 4 establishes a notion of Cellular
Automata over generalized Cayley graphs. A theorem of equivalence between
a mathematical and a constructive approach is given. Section 5 provides some
examples. Section 6 shows that the instances of the model thereby obtained are
recursively enumerable, and that their effect over finite graphs is computable;
which grants our model the status of a model of computation.

1 Generalized Cayley graphs: definitions

Notations. All graphs are assumed to be connected. The vertices of the graphs
we consider in this paper are uniquely identified by a name u in V . Vertices may
also be labelled with a state σ(u) in Σ a finite set. Each vertex has ports i in
π a finite set. A vertex and its port are written u :a. An edge is a two element
set {u : a, v : b}. The port of a node can only appear in one edge, so that the
degree of the graphs is always bounded by |π|. Edges may also be labelled with
a state δ({u : a, v : b}) in ∆ a finite set. All languages defined are on the finite
alphabet Π = π2 with a suffix in S = ε ∪ {1 . . . s}, i.e. they are subsets of Π∗.S.
Here ‘.’ represents the concatenation of words and ε the empty word, as usual.
The word operation w[u/v] substitutes v for u in w, but only if u is a prefix of
w, otherwise it leaves it unchanged.

1.1 Graphs as paths

Definitions 1 to 4 are as in [1].

Definition 1 (Graph). A graph G is given by

– An at most countable subset V (G) of V , whose elements are called vertices.
– A finite set π, whose elements are called ports.
– A set E(G) of non-intersecting two element subsets of V (G) :π, whose ele-

ments are called edges.

such that for all u, w in V (G), there exists n, v0, a0, b0, . . . vn, an, bn such that
for all i ∈ {0 . . . n− 1}, (vi : ai, vi+1 : bi+1) ∈ E(G) with v0 = u and vn = w, i.e.
the graph is assumed to be connected.

131

Definition 2 (Labelled graph). Let G be a graph. A labelling with states Σ,∆
is given by:

– A partial function σ from V (G) to Σ giving the label of the vertices.
– A partial function δ from E(G) to ∆ giving the label of the edges.

A labelled graph is a graph together with a labelling. The set of all graphs with
ports π is written Gπ. The set of labelled graphs with states Σ,∆ and ports π is
written GΣ,∆,π. To ease notations, we sometimes write v ∈ G for v ∈ V (G).

Definition 3 (Pointed graph). A pointed (labelled) graph is a pair (G, p)
with p ∈ G. The set of pointed graphs with ports π is written Pπ. The set of
pointed labelled graphs with states Σ,∆ and ports π is written PΣ,∆,π.

Definition 4 (Isomorphism). An isomorphism R is a function from Gπ to Gπ

which is specified by a bijection R(.) from V to V . The image of a graph G under
the isomorphism R is a graph RG whose set of vertices is R(V (G)), and whose
set of edges is {{R(u) : a,R(v) : b} | {u : a, v : b} ∈ E(G)}. Similarly, the image
of a pointed graphs P = (G, p) is the pointed graph RP = (RG,R(p)). When P
and Q are isomorphic we write P ≈ Q, defining an equivalence relation on the
set of Graphs. The definition extends to pointed labelled graphs.

In the particular graphs we are considering, the vertices can be uniquely distin-
guished by the paths that lead to them starting from the pointer vertex. Hence,
we might just as well forget about vertex names.

Definition 5 (Pointed graph modulo). Let P be a pointed (labelled) graph
(G, p). The pointed (labelled) graph modulo P̃ is the equivalence class of P with
respect to the equivalence relation ≈. The set of pointed graphs modulo with
ports π is written P̃π. The set of pointed labelled graphs modulo with states
Σ,∆ and ports π is written P̃Σ,∆,π.

Given such a pointed graph modulo, its set of paths forms a language, endowed
with a notion of equivalence whenever two paths designate the same vertex. The
language, together with its equivalence, is referred to as a the paths structure.

Definition 6 (Language of paths). Given a pointed graph modulo P̃ , we say
that u is a path of P̃ if and only if there is a sequence u of ports aibi such that,
starting from the pointer, it is possible to travel in the graph according to this
sequence. We define the language of paths L(P̃) of P̃ as the set of these paths.
More formally, u ∈ L(P̃) if and only if there exists (G, p) ∈ P̃ and v1, . . . , v|u| ∈
V (G) such that for all i ∈ {0 . . . |u| − 1}, one has {vi :ai, vi+1 :bi} ∈ E(G), with
v0 = p and ui = aibi.

Definition 7 (Equivalence of paths). Given a pointed graph modulo P̃ , we
define the equivalence of paths relation ≡P̃ on L(P̃) such that for all paths

u, u′ ∈ L(P̃), u ≡P̃ u′ if and only if, starting from the pointer, u and u′ lead
to the same vertex of P̃ . More formally, u ≡P̃ u′ if and only if there exists

(G, p) ∈ P̃ and v1, . . . , v|u|, v′1, . . . , v
′
|u′| ∈ V (G) such that for all i ∈ {0 . . . |u|−1},

i′ ∈ {0 . . . |u′|− 1}, one has {vi :ai, vi+1 :bi} ∈ E(G), {v′i′ :a′i′ , v′i′+1 :b
′
i′} ∈ E(G),

with v0 = p, v′0 = p, ui = aibi, u
′
i′ = a′i′b

′
i′ and v|u| = v|u′|.

132

Definition 8 (Paths structure). Given a pointed graph modulo P̃ , we define
the structure of paths X(P̃) as the structure 〈L(P̃),≡P̃ 〉. The set of all paths

structures is the set {X(P̃) | P̃ ∈ Pπ}. It is written X(P̃π).

Given two pointed graphs modulo, any difference between them shows up in
their paths structure.

Proposition 1 (Pointed graphs modulo and paths structures isomor-
phism). The function P̃ 7→ X(P̃) is a bijection between P̃π and X(P̃π).

1.2 Paths as languages

Inversely, we could have started by defining a certain class of languages endowed
with an equivalence, namely adjacency structures, and then see whether the
paths structures of graph modulo fall into this class. This is the purpose of the
following definitions and lemma.

Definition 9 (Completeness). Let L ⊆ Π∗.S be a language and ≡L an equiv-
alence on this language. The tuple (L,≡L) is said to be complete if and only
if

– ∀u, u′ ∈ L, v ∈ Π∗.S, u ≡L u′ ∧ u.v ∈ L ⇒ u′.v ∈ L ∧ u′.v ≡L u.v
– ∀u,∈ L, a, b ∈ π, u.ab ∈ L ⇒ u.ab.ba ∈ L ∧ u.ab.ba ≡L u

The completion (L′,≡L′) of (L,≡L) is the smallest complete extension of
(L,≡L).

Definition 10 (Prefix-stable language). L ⊆ Π∗.S is a prefix-stable lan-
guage if and only if

∀u, v ∈ Π∗.S, u.v ∈ L ⇒ u ∈ L.

Definition 11 (Adjacency structure). Let L ⊆ Π∗ be a prefix-stable lan-
guage and ≡L an equivalence on this language. The tuple (L,≡L) defines an
adjacency structure if and only if it is complete and

∀u, u′ ∈ L, a, b, c ∈ π, u ≡L u′ ∧ u.ab ∈ L ∧ u′.ac ∈ L ⇒ b = c.

When this is the case, L is referred to as an adjacency language and ≡L as an
adjacency equivalence. The adjacency structure X is denoted 〈L,≡〉. The set of
all adjacency structures X is written Xπ.

Definition 12 (Associated pointed graph modulo). Let X be some adja-
cency structure 〈L,≡L〉. Let V (X) be the set of equivalence classes of X. Let
P (X) be the pointed graph (G(X), ε̃), with G(X) such that:

– The set of vertices V (G(X)) is V (X);
– The edge {ũ : a, ṽ : b} is in E(G(X)) if and only if u.ab ≡L v, for all u ∈ ũ

and v ∈ ṽ.

133

We define the associated pointed graph modulo to be P̃ (X), i.e. the equivalence
class of P (X).

Soundness: Two properties of adjacency structures ensure that the ports of the
vertices are not used several times and thus that the graph associated to an
adjacency structure is always a well-defined object.

Definition 13 (Labelled adjacency structure). Let X = 〈L,≡L〉 be a an
adjacency structure. A labelling with states Σ,∆ is given by a labelling for P̃ (X).
The set of labelled adjacency structures with states Σ,∆ and ports π is written
XΣ,∆,π.

Not only do we have that paths structures are adjacency structures, but it also
turns out that any adjacency structure can be generated this way, i.e. it is the
paths structure of some pointed graph modulo.

Proposition 2 (Adjacency structures are paths structures). Let X be
some adjacency structure. The equality X = X(P̃ (X)) holds. Hence Xπ =
X(P̃π).

1.3 Graphs as languages

Generalized Cayley graphs. The following result comes out as a corollary of
Propositions 1 and 2:

Theorem 1 (Pointed graphs modulo and adjacency structures isomor-
phism). The function P̃ 7→ X(P̃) is a bijection between P̃π and Xπ, whose in-
verse is the function X 7→ P̃ (X). It can be extended into a bijection between
P̃Σ,∆,π and XΣ,∆,π.

Conventions. This theorem justifies the fact that

– a (labelled) pointed graph modulo P̃ (X) (resp. P̃),
– and a (labelled) adjacency structure X (resp. X(P̃)).

can be viewed as being the same mathematical object. Together with Definitions
8 and 12, it also justifies the fact that the vertices of this mathematical object
can be designated by

– ũ an equivalence class of X (resp. X(P̃)), i.e. the set of all paths leading to
this vertex starting from ε̃,

– or more directly by u an element of an equivalence class ũ of X (resp. X(P̃)),
i.e. a particular path leading to this vertex starting from ε.

These two remarks lead to the following mathematical conventions, which we
adopt for convenience. From now on:

– P̃Σ,∆,π and XΣ,∆,π will no longer be distinguished. The latter notation will
be preferred but most often given meaning of the former, i.e. we shall speak
of a “generalized Cayley graph” X in XΣ,∆,π,

134

– ũ and u will no longer be distinguished, and the latter notation will be
preferred but most often given the meaning of the former, i.e. we shall speak
of a “vertex” u in V (X), or simply x ∈ X .

– it follows that ‘≡’ and ‘=’ will no longer be distinguished, and the latter
notation will be preferred but most often given the meaning of the former,
i.e. we shall write u = v when strictly speaking we just have ũ = ṽ.

Such conventions may seem shocking at first but are very common in algebraic
structures, for instance it is common to write 2 + 2 = 4 even though they are
syntactically distinct. In any case, we will make sure that a rigorous meaning
can always be recovered by placing tildes back.
Discussion. Clearly this mathematical object, namely adjacency structures or
pointed graphs modulo, extends the notion of Cayley graph: those are recov-
ered for adjacency structures 〈L,≡L〉 having L = M∗, with M the subset
{aa−1, a−1a | a ∈ π} of π2. The extension is a strict one, because now arbi-
trary bounded degree graphs are allowed. The extension is an advantageous one,
since all of the key features of Cayley graphs remain: we are able to name ver-
tices relative to a point, though the word describing the path from that point,
and in fact the topology of the graph describes the equivalence structure upon
words. Another important feature of Cayley graphs is that they admit a well-
defined notion of translation, or shift. This again is maintained. This will be one
of the basic operations upon these generalized Cayley graphs which we present
in Section 2. Yet another important feature of Cayley graphs is that they admit
a compact, Hausdorff topology. This will be done in in Section 3.

2 Generalized Cayley graphs: basic operations

In terms of pointed graphs, the neighbours of radius r are just those nodes which
can be reached in r steps starting from the pointer. For the sake of mathematical
rigour we define them for generalized Cayley graphs as follows:

Definition 14 (Neighbours, neighbourhood structure). Let X ∈ Xπ be a
generalized Cayley graph given by 〈L,≡L〉. Let R be the subset of words of length
less than or equal to r in L, and ≡R the restriction of ≡R to this subset. The
neighbours of radius r in X is the set of vertices of X than can be designated by
an element of R. The neighbourhood structure of radius r is the completion of
(R,≡R).

Soundness: The completion of (R,≡R) is an adjacency structure because it is a
substructure of 〈L,≡L〉.

In terms of pointed labelled graphs, the disk of radius r is the subgraph induced
by those nodes which can be reached in r + 1 steps starting from the pointer,
but with labellings restricted to those that can be reached in r steps, see [1]. For
the sake of mathematical rigour we define them for generalized Cayley graphs
as follows:

135

Definition 15 (Disk). Let X ∈ XΣ,∆,π be a generalized Cayley graph given by
(〈L,≡L〉, σ, δ). The disk of radius r, namely Xr, is given by the neighbourhood
structure of radius r + 1, together with σr and δr the restrictions of σ and δ
to the neighbours of radius r. The set of disks of radius r of the set of labelled
adjacency structures XΣ,∆,π is the set of disks {Xr |X ∈ XΣ,∆,π}. It is denoted
Dr

Σ,∆,π.

Given a path from ε to a vertex u, it helps to have a notation for the inverse
path.

Definition 16 (Inverse). Given u ∈ Π∗ we define u so that for all a, b ∈ π,
v, w ∈ Π∗ we have ab = ba and v.w = w.v. The word u is in Π∗, it is referred
to as the inverse of u.

In a generalized Cayley graph, vertices are named after those paths that lead to
them, starting from the vertex ε. Given such a graph, it helps to have a notation
for the graph obtained by naming vertices relative to some other vertex u.

Definition 17 (Shift). Let X ∈ Xπ be a generalized Cayley graph given by
〈L,≡L〉. Given u ∈ X we define Xu as 〈L′,≡L′〉, with L′ equal to (L∩ u.Π∗)[u/ε]
and ≡L′ equal to (≡L ∩ (u.Π∗ × u.Π∗))[u/ε]. The resulting generalized Cayley
graph Xu is referred to as X shifted by u, and sometimes also denoted u.X.
Indeed, notice that if u ∈ X and v ∈ Xr for some r, then vu = u.v is in Xu.
The vertex vu is referred to as v shifted by u. The definition extends to labelled
generalized Cayley graphs.

A shift is just a graph isomorphism aiming at changing the position of the
pointer. Thus it makes sense to define a similar notion over graphs non-modulo.
Because words are usually endowed with an equality in our setting, which graphs
non-modulo do not provide, the definition is given relative to an adjacency struc-
ture X .

Definition 18 (Shift isomorphism). Let X be an adjacency structure and
V (X) its equivalence classes. Let G ∈ Gπ be a graph taken to have vertices that
are disjoint subsets of V (Xr).S. Given u ∈ V (X), consider R the isomorphism
obtained as the pointwise extension of a bijection mapping v.z 7→ vu.z, for any
v ∈ V (Xr), z ∈ S. We define Gu to be RG; it has vertices that are disjoint
subsets of V (Xu).S. The resulting graph Gu is referred to as G shifted by u, and
sometimes also denoted u.G. Indeed, notice that if v.z ∈ Gr for some r, then
vu.z = u.z.b is in Gu. The definition extends to labelled graphs.

These two definitions are consistent in the following sense: if X = X(P) ∈ Xπ

and u ∈ X , then Xu = X(Pu). As the functions P and X are inverses of
each other, we have the symmetric impliation: if P = P (X) and u ∈ P , then
Pu = P (Xu).
The next two definitions are standard, as they give a well-defined meaning to the
notion of union of graphs. See for instance [1], although here again the definition
is given relative to an adjacency structure X .

136

Definition 19 (Consistency). Let X be an adjacency structure and V (X) its
equivalence classes. Let G be a labelled graph (G, σ, δ), and G′ be a labelled graph
(G′, σ′, δ′), both taken to have vertices that are disjoint subsets of V (X).S. The
graphs are said to be consistent if and only if:

– ∀u ∈ G, u′ ∈ G′, u ∩ u′ 6= ∅ ⇒ u = u′,
– ∀u, v ∈ G, u′, v′ ∈ G′, a, a′, b, b′ ∈ π, {u : a, v : b} ∈ E(G) ∧ {u′ : a′, v′ : b′} ∈

E(G′) ∧ u = u′ ∧ a = a′ ⇒ b = b′ ∧ v = v′,
– ∀u, v ∈ G, u′, v′ ∈ G′, a, b ∈ π, u = u′ ⇒ δ({u : a, v : b}) = δ′({u′ : a, v′ : b})

when both are defined,
– ∀u ∈ G, u′ ∈ G′, u = u′ ⇒ σ(u) = σ′(u′) when both are defined.

They are said to be trivially consistent if and only if there is no u ∈ G, u′ ∈ G′

such that u = u′.

Definition 20 (Union). Let X be an adjacency structure and V (X) its equiv-
alence classes. Let G be a labelled graph (G, σ, δ), and G′ be a labelled graph
(G′, σ′, δ′), both taken to have vertices that are disjoint subsets of V (X).S. When-
ever they are consistent, their union is defined. The resulting graph G∪G′ is the
labelled graph with vertices V (G) ∪ V (G′), edges E(G) ∪ E(G′), labels that are
the union of the labels of G and G′.

3 Generalized Cayley graphs: topological properties

Having a well-defined notion of disks allows us to define a topology upon XΣ,∆,π,
which is the natural generalization of the well-studied Kantor metric upon CA
configurations [9]. It is interesting to compare its properties with the analogous
metric upon PΣ,∆,π.

Definition 21 (Gromov-Hausdorff-Kantor metrics). Consider the func-
tion

dX : XΣ,∆,π × XΣ,∆,π −→ R+

(X,X ′) 7→ dX(X,X ′) = 0 if X = X ′

(X,X ′) 7→ dX(X,X ′) = 1/2r otherwise

where r is the minimal radius such that Xr 6= X ′r.
Also consider the function:

dP : PΣ,∆,π × PΣ,∆,π −→ R+

(P, P ′) 7→ dP(P, P
′) = 0 if P = P ′

(P, P ′) 7→ dP(P, P
′) = 1/2r otherwise

where r is the minimal radius such that P and P ′ differ, starting from their
pointers p and p′.
Both functions are such that for ǫ > 0 we have (with r = ⌊log2(ǫ)⌋):

d(A,A′) < ǫ ⇔ Ar = A′r.

137

Both are metric, actually they are Hausdorff, ultrametric, i.e. for all A,B,C,
d(A,C) = max{d(A,B), d(B,C)}.

The fact that generalized Cayley graphs are pointed graphs modulo, i.e. the
fact that they have no “vertex name degree of freedom” is key to proving the
following property. Indeed, compactness crucially relies on the set being “finite-
branching”, meaning that the set of possible graphs, as one progressively enlarges
the radius of a disk, remains finite. This does not hold for usual graphs.

Lemma 1 (Compactness). The metric dX makes XΣ,∆,π into a compact space.

Continuity is a crucial notion in mathematics, which was used to characterize
CA [9].

Definition 22 (Continuous function). A function F from XΣ,∆,π to YΣ,∆,π

is said to be continuous if and only if for all X, for all η, there exists ǫ such that
for all X ′, dX(X,X ′) < ǫ implies dY(F (X), F (X ′)) < η.

Uniform continuity, on the other hand, is crucial notion in physics, as it captures
the fact that information does not propagate too fast.

Definition 23 (Uniformly continuous function). A function F from XΣ,∆,π

to YΣ,∆,π is said to be uniformly continuous if and only if for all η, there exists
ǫ such that for all X,X ′, dX(X,X ′) < ǫ implies dY(F (X), F (X ′)) < η.

Both are known to be equivalent, provided we have compactness.

Theorem 2 (Topology recap.).
Consider continuous functions F : X −→ Y, with X a Hausdorff compact space
and Y a Hausdorff space. Then

– F is uniformly continuous.
– If F has an inverse F−1, then this inverse is also continuous.

Theorem 2 summarizes well-known facts of general topology [6]. Their im-
plications for Cellular Automata were first studied in [9], with self-contained
elementary proofs available in [10]. For Cellular Automata over Cayley graphs
a complete reference is [3]. For Causal Graph Dynamics [1], these had to be re-
proven by hand, due to the lack of a clear topology in the set of graphs that was
considered. Here we are able rely on the topology of generalized Cayley graphs
and reuse Theorem 2 out-of-the-box, which makes generalized Cayley graph a
very attractive setting in order to generalize CA.

4 Causality and Localizability

Causality. The notion of causality extends the mathematical definition of Cel-
lular Automata over Cayley graphs. The extension is a strict one: not only the
graphs have become arbitrary, but their topology can also vary in time.

138

Definition 24 (Dynamics). A function F from XΣ,∆,π to GΣ,∆,π is said to be
a dynamics if and only if there exists suffixes S such that for all X, the vertices
of F (X) are disjoint subsets of V (X).S.

Definition 25 (Shift-invariant dynamics). A dynamics F : XΣ,∆,π → GΣ,∆,π

with suffixes S = ε ∪ {1 . . . s} is said to be shift-invariant if and only if for all
X, u ∈ X, F (X)u = F (Xu).

Definition 26 (Causal dynamics). A function F : XΣ,∆,π → GΣ,∆,π is said
to be a causal dynamics if and only if it is a shift-invariant dynamics suffixes S
and

– X 7→ (F (X), ε) is continuous.
– For all X, V (F (X)) is a partition of V (X).S.

Lemma 2 (Bounded inflation). Consider a causal dynamics F from XΣ,∆,π

to GΣ,∆,π. There exists a bound b such that for all X, v ∈ F (X), we have that
v ∈ F (X)|v|.b.

Localizability. The notion of localizability captures the exact same idea of the
constructive definition of Cellular Automata, namely a single local rule f applied
in a translation-invariant manner on the input graph.

Definition 27 (Local rule). A function f from Dr
Σ,∆,π to GΣ,∆,π is a local

rule if and only if it is a dynamics with suffixes S and

– For any disk Xr, we have that z ∈ S implies z ∈ f(Xr).
– For any disk Xr+1 and any u ∈ X0 we have that f(Xr) and u.f(Xr

u) are
non-trivially consistent.

– For any disk X3r+2 and any u ∈ X2r+1 we have that f(Xr) and u.f(Xr
u)

are consistent.

The conventions taken for the local rules are so that integer z stands for the
‘successor of rank z’. Hence the words in {1 . . . s} designate the successors of the
vertex ε, whereas those in Π≤r.{1 . . . s} are the successors of its neighbours of
radius r. For instance a vertex named {1, ab.2} is understood to be both the first
successor of vertex ε, and the second successor of vertex ab.

Definition 28 (Localizable function). A function F from XΣ,∆,π to GΣ,∆,π

is said to be localizable if and only if there exists a radius r and a local rule f
from Dr to GΣ,∆,π such that for all X, F (X) is given by:

⋃

u∈X

u.f(Xr
u).

Equivalence. The following theorem shows that this constructive definition is in
fact equivalent to the topological definition of causal functions.

Theorem 3 (Causal is localizable). A function F from XΣ,∆,π to GΣ,∆,π is
causal if and only if it is localizable.

139

5 Example

The following is an example of causal, hence localizable dynamics. It is adapted
from [1], for comparison.

Inflating grid

In this example, each vertex gives birth to four distinct vertices such that the
structure of the initial graph is preserved. The degree of the graph is bounded
by |π| = 4, as the ports take their names in π = {n, s, e, w} (for north, south,
east and west directions). Here the labels of the vertices and edges are ignored.
The general case of the local rule, defined on disks of radius one, is described in
Figure 1. This local rule generates a subgraph of 12 vertices (named 0 through

ε ewwe

ns

sn

: n

: e

: s

: w

11

72

8

ns.ew
ew.ns

sn.ew
ew.sn

sn.we
we.sn

we.ns
ns.we

4

ns.3
ns.we. 7

we.6
ns.9we.1

ew.ns. 8

ew.3
ew.sn. 4ew.10

sn.5

sn.1
en.ew. 11

1

3

9

5

6

10

ns.2
ns.ew. 10

ns.8
ew.10 ew.ε

ew.ns. 9

we.7
sn.4ew.7

ew.sn. 5

sn.ε
sn.we. 6

ε

Fig. 1. General local rule for the inflating grid (8 neighbours)

11), some with further names serving as identification information, so that the
generated graphs glue back together. For a complete definition we would also
have to include the border cases, where the pointed vertex is surrounded by less
than 8 neighbours (see Figure 2, for instance). The gluing rule of the diffent

ε ewwe

ns

ε
: n

: e

: s

: w

11

72

ns.ew
ew.ns

4

ns.3

we.6
ns.9

we.1

ew.3ew.10

1

3

5

6

10

ns.2
ns.ew. 10

ns.8
ew.10 ew.ε

ew.ns. 9

we.7ew.7

Fig. 2. General local rule for the inflating grid (4 neighbours)

140

u.f(Xr
u) is done by identifying the vertices having the same set of names, as

illustrated in Figure 3.

{ε} {6, ew.ε}

{7, ew.3}

ε ewe w

f f

{1, ew.11}

{3} {2, ew.10}

{ε, we.6} {1}

{2}

{3, we.7}{10, we.2}

{11, we.1}

ε. ew.

{ε} {6, ew.ε}

{7, ew.3}

{1, ew.11}

{3} {2, ew.10}

{ew.11, 1} {ew.ε, 6} {ew.1}

{ew.2}

{ew.3, 7}{ew.10, 2}

Fig. 3. Inflation of a pair of vertices.

6 Computability

Our causal dynamics over generalized Cayley graphs is a candidate model of
computation accounting for space, but without this space being fixed. As a
candidate model of computation, we must check that it is computable. The
following shows that we can decide whether a syntactic object is a valid instance
of the model.

Proposition 3 (Decidability of consistency). Given a dynamics f from
Dr

Σ,∆,π to GΣ,∆,π with suffixes S, it is decidable whether f is a local rule.

Sketch of the proof:
We can enumerate the possible Xr and check that ε, 1, . . . , s ∈ f(Xr). We can
enumerate the possible Xr+1 and check that for all u ∈ X0, f(Xr) and u.f(Xr

u)
are non-trivially consistent. We can enumerate the possible X3r+2 and check
that for all u ∈ X2r+1, f(Xr) and u.f(Xr

u) are consistent.
Next, we prove that we can enumerate all instances of the model.

Proposition 4 (Recursive enumeration of local rules). The set of all local
rules is recursively enumerable.

141

Sketch of the proof:
If we fix a radius r and suffixes S = ε ∪ {1, . . . , s}, there is a finite number of
dynamics f from Dr to GΣ,∆,π with bound s. For each of these, from the above
lemma, it can be decided whether it is a local rule.
Finally, we prove that if the initial state is finite, its evolution can be computed.

Proposition 5 (Computability of causal functions). Given a local rule f
and a finite generalized Cayley graph X, then F (X) is computable, with F the
causal dynamics induced by f .

Sketch of the proof:
Since f is a local rule, the images of disks of radius r included in X are all finite,
and consistent with one another. The finite union of finite, consistent graphs, is
computable.

7 Further works

The mathematical relation between the causal dynamics of [1] and ours remains
to be clarified. The propositions of Section 6 remain to be proven for the causal
graph dynamics of [1]. Still, they are important features of models of computa-
tion. The fact that they are relatively straightforward to prove in this paper is a
good indicator that the formalism presented is appropriate. Another important
issue is to characterize the localizable dynamics from X to X, just like we did for
those from X to G.

Acknowledgements

This work has been funded by the ANR-10-JCJC-0208 CausaQ grant. Christophe
Crespelle, Gilles Dowek, Viv Kendon, Jean Mairesse, Vincent Nesme, Eric Thierry.

References

1. P. Arrighi and G. Dowek. Causal graph dynamics. In Proceedings of ICALP 2012,
Warwick, July 2012, to appear in LNCS. Pre-print arXiv:1202.1098, 2012.

2. P. Boehm, H.R. Fonio, and A. Habel. Amalgamation of graph transformations:
a synchronization mechanism. Journal of Computer and System Sciences, 34(2-
3):377–408, 1987.

3. T. Ceccherini-Silberstein and M. Coornaert. Cellular automata and groups.
Springer Verlag, 2010.

4. B. Derbel, M. Mosbah, and S. Gruner. Mobile agents implementing local compu-
tations in graphs. Graph Transformations, pages 99–114, 2008.

5. H. Ehrig and M. Lowe. Parallel and distributed derivations in the single-pushout
approach. Theoretical Computer Science, 109(1-2):123–143, 1993.

6. V.V. Fedorchuk, A.V. Arkhangelskiui, and L.S. Pontriagin. General topology I,
volume 1. Springer, 1990.

142

7. J.L. Giavitto and A. Spicher. Topological rewriting and the geometrization of
programming. Physica D: Nonlinear Phenomena, 237(9):1302–1314, 2008.

8. Stefan Gruner. Mobile agent systems and cellular automata. Autonomous Agents
and Multi-Agent Systems, 20:198–233, 2010. 10.1007/s10458-009-9090-0.

9. G. A. Hedlund. Endomorphisms and automorphisms of the shift dynamical system.
Math. Systems Theory, 3:320–375, 1969.

10. K. Kari. Cellular Automata, Lecture notes. http:users.utu.fijkarica, 2011.
11. A. Klales, D. Cianci, Z. Needell, D. A. Meyer, and P. J. Love. Lattice gas simula-

tions of dynamical geometry in two dimensions. Phys. Rev. E., 82(4):046705, Oct
2010.

12. H.J. Kreowski and S. Kuske. Autonomous units and their semantics-the parallel
case. Recent Trends in Algebraic Development Techniques, pages 56–73, 2007.

13. W. Kurth, O. Kniemeyer, and G. Buck-Sorlin. Relational growth grammars–a
graph rewriting approach to dynamical systems with a dynamical structure. Un-
conventional Programming Paradigms, pages 97–97, 2005.

14. M. Löwe. Algebraic approach to single-pushout graph transformation. Theoretical
Computer Science, 109(1-2):181–224, 1993.

15. C. Papazian and E. Remila. Hyperbolic recognition by graph automata. In Au-
tomata, languages and programming: 29th international colloquium, ICALP 2002,
Málaga, Spain, July 8-13, 2002: proceedings, volume 2380, page 330. Springer Ver-
lag, 2002.

16. Z. Róka. Simulations between cellular automata on Cayley graphs. Theoretical
Computer Science, 225(1-2):81–111, 1999.

17. G. Taentzer. Parallel and distributed graph transformation: Formal description and
application to communication-based systems. PhD thesis, Technische Universitat
Berlin, 1996.

18. G. Taentzer. Parallel high-level replacement systems. Theoretical computer science,
186(1-2):43–81, 1997.

19. K. Tomita, S. Murata, A. Kamimura, and H. Kurokawa. Self-description for con-
struction and execution in graph rewriting automata. Advances in Artificial Life,
pages 705–715, 2005.

20. Kohji Tomita, Haruhisa Kurokawa, and Satoshi Murata. Graph automata: natural
expression of self-reproduction. Physica D: Nonlinear Phenomena, 171(4):197 –
210, 2002.

21. Kohji Tomita, Haruhisa Kurokawa, and Satoshi Murata. Graph-rewriting au-
tomata as a natural extension of cellular automata. In Thilo Gross and Hiroki
Sayama, editors, Adaptive Networks, volume 51 of Understanding Complex Sys-
tems, pages 291–309. Springer Berlin / Heidelberg, 2009.

22. S. Von Mammen, D. Phillips, T. Davison, and C. Jacob. A graph-based devel-
opmental swarm representation and algorithm. Swarm Intelligence, pages 1–12,
2011.

143

